摘要 - 现在,混凝土用于最大的建筑项目,并且在不久的将来,没有其他选择。有必要开发更好的质量混凝土,以延长生存更长的生存并具有提高机械品质,以延长任何结构的使用寿命,因为大量混凝土被用于新建筑工作。不可能改变其天生的易碎性或对任何混凝土结构的拉伸强度的要求。纤维增强混凝土(FRC)似乎是可行的替代品。聚酯和聚丙烯纤维(PP)作为混凝土中的二级加固以改变其脆性特性的实际应用是本研究论文的主要主题。在这项调查中采用了M40级混凝土等级。结果,将不同比例的聚酯和聚丙烯纤维添加到混凝土中。按该顺序按混凝土的重量进行0.32、0.37、0.42和0.47。为了研究聚酯和聚丙烯在混凝土中的使用,进行了一系列受控的实验室测试。对于压缩和弯曲强度,仅在第一个样品中评估了基本混凝土混合物。在0.32、0.37、0.42和0.47%的聚丙烯纤维中分别评估第二个样品的抗压强度和弯曲强度,将其添加到混凝土混合物中。在第三个混凝土样品中测试了聚酯和聚丙烯纤维。演示了如何在混凝土中添加纤维可以提高其质量。
2025年1月15日撰写:纳粹·安迪比(Nazanin Andalibi)(密歇根大学),大卫·丹克斯(加利福尼亚大学,圣地亚哥分校),海莉·格里芬(Haley Griffin),海莉·格里芬(计算机研究协会),玛丽·卢·马赫(Mary Lou Maher)(计算机研究协会),杰西卡·麦克莱恩(JESSICA MCCLEARN(GOOGLE),Google)健康),凯蒂·西克(Katie Siek)(印第安纳大学),塔米·托斯科斯(Tammy Toscos)(Parkview Health),Helen V. Wright(计算研究协会)和Pamela Wisniewski(Vanderbilt University)此反应来自计算机研究协会(CRA)的计算社区联合会(CCC)(CCC)和CRA-Industry(CRA-Industry)。CRA是近250个北美计算机研究组织的协会,包括学术和工业,以及来自六个专业计算社会的合作伙伴。CCC的任务是CRA的小组委员会,是为了追求创新的,高影响力的计算研究,与紧迫的国家和全球挑战保持一致。CRA的另一个小组委员会CRA-I的使命是召集行业合作伙伴计算共同利益的研究主题,并将其与CRA的学术和政府选民联系起来,以促进共同利益和改善社会成果。请注意,本材料中表达的任何意见,发现,结论或建议是作者的意见,不一定反映了作者隶属关系的观点。下面我们回答了提出评论请求的问题1-9、11和13-14。
在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。
1992 年捷克斯洛伐克的国有资产私有化被广泛誉为前共产主义经济体经济转型中最令人印象深刻的成就之一。在 1993 年 1 月 1 日分裂为两个国家之前,捷克斯洛伐克迅速大规模地进行了国有企业私有化。这一过程的一个关键要素是代金券私有化——几乎免费向公民发放代金券,公民则用代金券竞购国有企业的股份。捷克斯洛伐克代金券方案的设计和实施引发了许多国家学者和政策制定者的激烈辩论。一小部分俄罗斯企业已经通过代金券方案进行了私有化,其他转型经济体也可能引入类似的制度。
24种类型的偏头痛类型诊断(偏头痛的典型光环,不含光环的偏头痛,不含偏头痛的典型光环,家族性偏瘫偏头痛,零星偏瘫偏头痛,基底型Aura,其他)
摘要:焦虑症 (AD) 是一种主要的精神疾病。然而,由于 AD 的症状和混杂因素很多,很难诊断,患者长期得不到治疗。因此,研究人员对非侵入性生物信号的兴趣日益浓厚,例如脑电图 (EEG)、心电图 (ECG)、皮肤电反应 (EDA) 和呼吸 (RSP)。将机器学习应用于这些信号使临床医生能够识别焦虑模式并区分病人和健康人。此外,已经开发了具有多种不同生物信号的模型,以提高准确性和便利性。本文回顾并总结了 2012 年至 2022 年发表的将不同的机器学习算法应用于各种生物信号的研究。在此过程中,它提供了当前发展优缺点的观点,以指导未来焦虑检测的进步。具体而言,这篇文献综述表明,对于样本量为 10 至 102 名参与者的研究,测量准确度在 55% 至 98% 之间,非常有希望。平均而言,仅使用 EEG 的研究似乎获得了最佳性能,但使用 EDA、RSP 和心率可获得最准确的结果。随机森林和支持向量机被发现是广泛使用的机器学习方法,只要进行了特征选择,它们就会产生良好的结果。神经网络也被广泛使用,并提供良好的准确性,其优点是不需要进行特征选择。这篇综述还评论了模态的有效组合以及检测焦虑的不同模型的成功。
随着数字经济中数据收集和使用的激增,国民经济账户编制者和用户对数据存量和流量的理解和统计处理引起了关注。在本文中,我们通过总结职业中隐含的数据相关活动的生产成本来衡量美国商业部门自有数据存量和流量的价值。我们的方法通过使用机器学习模型和在线招聘广告文本代理职业级别的时间使用因素,增强了传统的成本总和方法,用于衡量国民经济账户中其他自有知识产权产品(Blackburn 2021)。在我们的实验估计中,我们发现美国商业部门对自有数据资产的年度现值投资从 2002 年的 840 亿美元增长到 2021 年的 1860 亿美元,年均增长率为 4.2%。2002-2021 年期间的累计现值投资为 2.6 万亿美元。除了年度现价投资外,我们还提供历史成本净存量、实际增长率以及对工业部门增加值的影响。
近年来,提高绿色能源的使用率以满足日益增长的能源需求和应对全球变暖已成为各国的重要目标之一。因此,将可再生能源整合为分布式发电变得越来越流行。在本研究中,为土耳其代尼兹利省萨拉伊科伊区一个 100 户家庭的电气化设计了混合可再生能源系统,并使用电力可再生能源混合优化模型程序来优化所需的组件输出,以实现最佳的经济和环境效果。共创建了六种混合可再生能源系统设计,三种并网和三种独立系统,这些系统采用了光伏板、风力涡轮机、柴油发电机、电池储能系统和转换器等不同组件的组合。最经济的设计是仅使用太阳能的并网系统,单位能源成本为 0.0362 美元/千瓦时,而最具成本效益的是包含太阳能、风能和电池的独立系统,成本为 1.61 美元/千瓦时。从环境角度来说,离网系统恰恰相反,排放的二氧化碳较少,而并网系统排放的二氧化碳较多。
癫痫发作类型识别对于癫痫患者的治疗和管理至关重要。然而,这是一个耗时耗力的困难过程。随着机器学习算法的进步,自动诊断系统有可能加速分类过程、提醒患者并支持医生做出快速准确的决策。在本文中,我们提出了一种新型多路径癫痫发作类型分类深度学习网络 (MP-SeizNet),它由卷积神经网络 (CNN) 和具有注意机制的双向长短期记忆神经网络 (Bi-LSTM) 组成。本研究的目的是仅使用脑电图 (EEG) 数据对特定类型的癫痫发作进行分类,包括复杂部分性、简单部分性、失神性、强直性和强直阵挛性癫痫发作。EEG 数据以两种不同的表示形式输入到我们提出的模型中。 CNN 接收从 EEG 信号中提取的小波特征,而 Bi-LSTM 接收原始 EEG 信号,以便我们的 MP-SeizNet 能够从癫痫发作数据的不同表示中进行联合学习,从而获得更准确的信息学习。我们利用最大的 EEG 癫痫数据库——天普大学医院 EEG 癫痫发作语料库 TUSZ v1.5.2 评估了所提出的 MP-SeizNet。我们使用三重交叉验证对不同患者数据评估了我们提出的模型,并使用五重交叉验证对癫痫发作数据评估了模型,结果分别获得了 87.6% 和 98.1% 的 F1 分数。
摘要 - 本文提出了一种旨在检测套利机会的模型,重点是三角形和跨市场套利。利用Bellman-Ford算法和图形理论,该模型有效地确定了负循环,指示了高流动性环境中潜在套利的负循环,并结合了虚拟和实时数据。虽然证明它对于三角套利特别有效,但该模型需要进一步的完善才能提高其在跨市场场景中的有效性。在实际交易方案中,该模型面临着重大挑战,例如需要快速执行,交易费用的影响以及波动金融市场的需求。该研究讨论了必要的模型增强功能,以提高现实世界的适用性和执行效率。