1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
10。实时视频和图像的自动角色识别。11。电影角色标识的强大的面名匹配12。检测水果的质量形成图像。13。使用CNN算法14的基于内容的图像搜索。Houser值得使用CNN机器学习从图像预测15。使用机器学习的土壤分类和作物预测16。使用深度学习分析电子政务服务17。Houser值得从CNN机器学习中从图像预测18。使用CNN19。covid 19黑色燃料使用CNN20。通过使用CNN 21训练的IRIS图像进行身份验证的登录。花朵分类和医学使用CNN
摘要 隐性性别偏见会给职场女性带来代价高昂且复杂的后果,许多女性报告称自己遭受了性别微侵犯,这导致她们被忽视或不尊重。我们呈现了一个在线桌面虚拟环境,从第一人称视角讲述了男性或女性自我形象的故事,他们要么经历积极要么消极的工作场景。消极场景包括许多来自性别微侵犯分类的例子。与拥有男性自我形象的参与者相比,与女性自我形象有过消极职场体验的参与者的隐性性别偏见水平显著降低。有证据表明,在消极条件下,女性自我形象表现出同理心和观点采择。无论自我形象的性别如何,积极的职场场景体验都没有表明隐性性别偏见显著减少。我们讨论了这些发现的含义,并就减少隐性偏见提出了虚拟环境技术和场景的建议。
开发了一种用于低温沉积二氧化硅的新光化学反应。在此过程中,硅烷在真空紫外线照射下与二氧化氮发生反应。报告了在 1006C 下生长的薄膜的电气和机械性能。硅上金属氧化物半导体结构的电容电压测量表明界面态密度 <5 10 11/cm 2。讨论了几种可能的反应机制,并提出了表明表面光化学可能是
勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
近几十年来,激光技术的进步使飞秒激光器的创建成为可能。这是一种特殊的激光类型,在该激光器上,激光束由重复的高能灯爆发仅几百秒秒,而与在每个常见激光指针中发现的连续激光束相反。短脉冲持续时间与每个爆发中的高能量配对会产生显着的峰值功率,从而使激光器能够以常规激光不能无法处理的方式处理材料。但是,能够产生飞秒激光束的机器的大尺寸和重量通常要求它们保持固定。要利用激光束进行处理,需要精确的重定向。在本报告中,我们描述了将常规CNC机器转换为激光处理站的过程,并通过在玻璃,金属箔和KTP晶体上写下我们的发现。该机器能够遵循具有千分尺精确度的CAD说明,以更改,铭文和切割一系列材料。使用绿色(λ= 514 nm)以及红外激光(λ= 1028 nm)进行处理,后者产生更好的结果。最终的激光设置可用于反复,可靠地处理所有材料,并在与化学蚀刻结合使用时在KTP上有很有希望的结果。