为了实现上述目标,本报告着重于部署屋顶太阳能PV系统的评估,以支持电动巴士充电基础设施。此外,该分析基于三个特定位置,即Cijantung,终端Ragunan和登台设施Pejaten
Andrii Shuliak 1 、Andrii Hedzyk 2 、Nina Tverezovska 3 、Lyubov Fenchak 4 、Natalia Lalak 5 、Anatolii Ratsul 6 、Oleksandr Kuchai 7 1 教育学博士,乌克兰帕夫洛·特奇纳乌曼国立师范大学信息学、信息和通信技术系教师 2 乌克兰德拉戈马诺夫国立师范大学研究生(博士) 3 教育学博士,教授,乌克兰国立生命与环境科学大学社会工作与康复系教授 4 教育学候选人,副教授,乌克兰穆卡切沃国立大学 5 教育学候选人,副教授,乌克兰穆卡切沃国立大学 6 教育学博士,教授,沃洛基米尔教育与特殊教育系主任维尼琴科乌克兰中央国立师范大学,乌克兰 7 教育学博士,副教授,乌克兰国立生命与环境科学大学教育学系教授,乌克兰
摘要:在计算机视觉的领域,使用OpenCV的年龄和性别检测是一种关键应用,展示了复杂算法和真实世界应用的融合。该项目努力开发一个能够准确估算图像或视频流的年龄和性别的强大系统。利用OpenCV的力量,一个流行的开放式计算机视觉库,再加上机器学习技术,该系统旨在自动将个人分类为预定义的年龄组和性别类别。通过面部特征分析,深度学习模型和图像处理技术的结合,系统可以以惊人的精度辨别年龄和性别属性。通过将该技术集成到各种领域,例如监视,营销和用户体验自定义,该项目努力为各种社会和商业挑战提供实用的解决方案。年龄和性别的抽象性质使这项努力多基础,需要一种细微的方法,包括数据预处理,模型培训和绩效优化。最终,该项目有助于进步计算机视觉应用程序,从而促进了许多领域的创新和效率。关键字:CNN,深度学习,性别分类,年龄检测。I.在当今相互联系的世界中引言,在那里,数字互动和社交媒体渗透到日常生活中,了解人口统计学(例如性别和年龄)变得越来越重要。II。II。智能设备的扩散促进了大量数据的收集,其中大部分包含对人类行为和互动的宝贵见解。在利用这些数据,性别和年龄预测算法的无数应用程序中,它们在增强用户体验,个性化内容并告知决策的潜力中脱颖而出 - 在各个领域制定过程。由于其丰富的信息内容,面部照片已成为性别检测和年龄预测算法的主要来源。利用图像处理,特征提取和分类技术方面的进步,研究人员和开发人员设计了复杂的方法来分析面部特征并准确推断人口统计学属性。这些方法通常涉及阶段,例如增强图像,以提高质量和分割以隔离相关特征,从而为后续分析奠定了基础。通过训练大型数据集的神经网络,我们旨在开发能够准确地将性别预测为“男性”或“女性”的强大模型,并可能基于实验参数对年龄组进行分类。除了技术复杂性之外,人类面部图像对各个行业和社会领域都具有深远的影响。从安全和娱乐到招聘和身份验证,从面部图像中检测性别和年龄的能力可以简化流程,增强安全措施并为战略决策提供了信息。相关作品本文使用应用于面部图像的深度学习技术介绍了有关性别识别的研究。此外,面部表情,人类交流的重要方面,提供了对情感状态和反应的见解,使面部图像分析成为心理学家和研究人员的宝贵工具。通过阐明这些技术的方法,挑战和潜在应用,我们旨在为计算机视觉中的知识不断增长,并促进具有真实世界影响的实用解决方案的发展。作者探索了卷积神经网络(CNN)的使用进行特征提取和分类,从而实现了有希望的
摘要 - 社交媒体中的人们传播了许多信息,以更新其状态并与他人分享关键新闻。但是,这些平台中的大多数并未迅速验证个人或其帖子,人们无法手动识别假新闻。因此,需要一个能够检测假新闻的自动化系统。这项研究提出了使用四种机器学习算法构建模型。实验中采用的数据集是两个数据集的综合,其中包含几乎相等数量的有关政治的真实和虚假新闻文章。预处理阶段首先要通过删除标点符号,令牌化,特殊字符,白色空间,冗余单词消除,数字和英文字母,然后启动并停止数据离散化。然后,我们分析了收集到的数据,其中80%的数据最初用于训练每个模型。之后,应用四种明显的分类算法。使用新闻文章中的虚假新闻,诸如逻辑回归,决策树,随机森林和梯度提升分类器之类的方法。使用其余20%的数据评估了受过训练的分类器的精度。结果表明,决策树模型的最佳精度为99.60%,梯度提升为99.55%。此外,随机森林显示99.10%,逻辑回归98.99%。此外,我们还探索了根据混乱矩阵的结果获得最高精度,回忆,F1得分的最佳模型。索引术语 - 社会媒体,虚假新闻检测,机器学习,分类器,逻辑回归,决策树,随机森林,梯度提升。
CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。
牙科的历史几乎与人类文明一样长,如今牙医面临的最困难的事情之一就是管理患者的疼痛和焦虑1。即使面对牙科技术和护理的进步,许多人仍然由于疼痛和焦虑而避免或推迟接受牙齿护理。焦虑是对手术的常见反应,尤其是在使用局部麻醉剂在手术过程中保持清醒时可能引起各种独特的问题和焦虑。除了感到不舒服外,焦虑还与延迟康复,对镇痛药的需求更高,术后疼痛以及手术期间的焦虑有关。此外,担心的患者需要更长的时间来治愈,对他们的结果不太满意,并且定期访问2。此外,对焦虑的患者特别治疗儿童会导致牙医变得更加痛苦。
1992 年捷克斯洛伐克的国有资产私有化被广泛誉为前共产主义经济体经济转型中最令人印象深刻的成就之一。在 1993 年 1 月 1 日分裂为两个国家之前,捷克斯洛伐克迅速大规模地进行了国有企业私有化。这一过程的一个关键要素是代金券私有化——几乎免费向公民发放代金券,公民则用代金券竞购国有企业的股份。捷克斯洛伐克代金券方案的设计和实施引发了许多国家学者和政策制定者的激烈辩论。一小部分俄罗斯企业已经通过代金券方案进行了私有化,其他转型经济体也可能引入类似的制度。