生成式人工智能是一组相对较新的技术,它利用大量(非常大)数据以及一些机器学习 (ML) 技术根据用户的输入(称为提示)生成内容。新内容可以是书面形式(例如 ChatGPT 或 Bard),也可以是视觉形式(例如 Dall-E)。这些工具正在迅速发展,并且仍然是活跃研究的主题:提高我们对它们实际工作方式及其在社会中的使用影响的理解。这些工具不是人类意义上的真正智能,而是非常复杂的模型,可以预测满足提示的语言、文本或视频应该是什么。由于其影响和潜在用途以及风险和危险,这些指南可作为波士顿市员工的临时资源。
脑电图(EEG)在记录大脑活动中起着至关重要的作用,并且是脑部计算机界面(BCI)技术的发展。但是,EEG信号的有限可用性和高可变性在创建可靠的BCI时面临着重大挑战。为了解决这个问题,我们提出了一个实用的解决方案,了解深度学习的最新发展和Wasserstein生成的对抗网络(WGAN)。WGAN在BCI2000数据集上进行了培训,其中约1500个脑电图记录和45个人的64个渠道。通过三个分类器评估生成的脑电图信号,得出的平均精度提高了。使用特里切特构成距离(FID)测得的生成信号的质量分别为1.345和11.565,分别为眼睛开放和闭合。即使没有光谱或空间损失项,我们的wgan模型也能够模仿脑电图训练数据的光谱和空间特性。在其地形图和功率频谱密度(PSD)图中,wgan生成的数据在封闭式静止和高三角波中的闭合静止和高增量波中的主要α活性反映了。我们的研究证明,通过增强小型数据集以提高分类器的概括性,WGAN在解决BCI开发的有限脑电图数据问题方面的潜力。
摘要 - 现在,混凝土用于最大的建筑项目,并且在不久的将来,没有其他选择。有必要开发更好的质量混凝土,以延长生存更长的生存并具有提高机械品质,以延长任何结构的使用寿命,因为大量混凝土被用于新建筑工作。不可能改变其天生的易碎性或对任何混凝土结构的拉伸强度的要求。纤维增强混凝土(FRC)似乎是可行的替代品。聚酯和聚丙烯纤维(PP)作为混凝土中的二级加固以改变其脆性特性的实际应用是本研究论文的主要主题。在这项调查中采用了M40级混凝土等级。结果,将不同比例的聚酯和聚丙烯纤维添加到混凝土中。按该顺序按混凝土的重量进行0.32、0.37、0.42和0.47。为了研究聚酯和聚丙烯在混凝土中的使用,进行了一系列受控的实验室测试。对于压缩和弯曲强度,仅在第一个样品中评估了基本混凝土混合物。在0.32、0.37、0.42和0.47%的聚丙烯纤维中分别评估第二个样品的抗压强度和弯曲强度,将其添加到混凝土混合物中。在第三个混凝土样品中测试了聚酯和聚丙烯纤维。演示了如何在混凝土中添加纤维可以提高其质量。
ErbB 受体家族(包括 EGFR 和 HER2)在细胞生长和存活中起着至关重要的作用,并与乳腺癌和肺癌等各种癌症的进展有关。在本研究中,我们开发了一个深度学习模型,使用基于 SMILES 表示的分子指纹来预测 ErbB 抑制剂的结合亲和力。每种 ErbB 抑制剂的 SMILES 表示均来自 ChEMBL 数据库。我们首先从 SMILES 字符串生成 Morgan 指纹,并应用 AutoDock Vina 对接来计算结合亲和力值。根据结合亲和力过滤数据集后,我们训练了一个深度神经网络 (DNN) 模型来根据分子指纹预测结合亲和力值。该模型取得了显著的性能,训练集上的均方误差 (MSE) 为 0.2591,平均绝对误差 (MAE) 为 0.3658,R 平方 (R²) 值为 0.9389。尽管在测试集上性能略有下降(R² = 0.7731),但该模型仍然表现出强大的泛化能力。这些结果表明深度学习方法对于预测 ErbB 抑制剂的结合亲和力非常有效,为虚拟筛选和药物发现提供了宝贵的工具。
1简介自主控制算法的设计是一项艰巨的任务,因为它传统上需要大量的现实测试,这既耗时又昂贵。仿真是自治设计的宝贵工具,例如,以时间和成本效益的方式协助参数调整,算法测试。此外,在机器学习范围(ML)的范围内,由于其生成训练数据的能力,模拟具有吸引力。在此,我们证明了模拟引擎[1]和自治研究床(ART)[2]平台来促进自治政策制定过程,以避免ML控制政策。这项工作建立了以前的贡献,这些贡献证明了控制策略的各种多速路径的可传递性[3,4]。这项研究证明了通过机器学习(ML)避免障碍物的额外能力。ML已通过收集的数据进行了培训,而人类驾驶员则在模拟器中驱动。
1. 简介 3D 建模是使用专门的计算机程序创建和修改三维对象的过程,该程序为用户提供了一组必要的工具。 3D 建模通常从基本形状(基元)开始,例如立方体、球体、圆环等。然后通过软件提供的不同功能修改这些形状。用户通常通过按下键盘上的组合键或从用户界面中选择它们来激活这些功能。如今,有许多功能强大的 3D 建模软件,可以创建 3D 资源、动画、特效和渲染图像。最受欢迎的付费应用程序是 Autodesk Maya、Autodesk 3ds Max 和 Cinema 4D。也有许多免费应用程序可用,但最受欢迎的应用程序是 Blender。Blender 是一个免费的开源 3D 计算机图形软件工具集。它用 C、C++ 和 Python 编程语言编写。Blender 基金会是一个负责 Blender 开发的非营利组织。 Blender 也是由社区开发的,社区创建了用 Python 编写的附加插件(称为附加组件)。附加组件为 Blender 添加了新功能或改进功能。由于 Blender 发展基金的成立,Blender 最近获得了 Epic Games、Nvidia 或 Intel 的大量资金支持。它使 Blender 基金会能够招募新的团队成员,从而更快地开发 Blender。
本文讨论了超维计算(HDC)(又称向量符号架构(VSA))中全息特征向量的分解。HDC 使用具有类似大脑特性的高维向量来表示符号信息,并利用高效的运算符以认知方式构建和操作复杂结构化数据。现有模型在分解这些结构时面临挑战,而分解过程对于理解和解释复合超向量至关重要。我们通过提出 HDC 记忆分解问题来应对这一挑战,该问题捕捉了 HDC 模型中常见的构造模式。为了有效地解决这个问题,我们引入了超维量子记忆分解算法 HDQMF。HDQMF 的方法独特,利用量子计算提供高效的解决方案。它修改了 Grover 算法中的关键步骤来实现超向量分解,从而实现了二次加速。
勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
金融市场瞬息万变,实时更新和分析至关重要。这些市场容易受到全球事件和现象的影响,例如贸易战、内乱、创新和科学发现。金融新闻可从多种来源获得,包括在线和离线。这里的在线来源是指可以通过互联网获取的来源,这里的离线来源是指通过其他媒体传播的来源。离线来源包括通过报纸和电视获得的新闻和见解。对于像股票市场一样敏感的金融市场来说,通过报纸获得的新闻已经过时了。电视上的新闻是现场直播的,但这种新闻无法轻松分析。在相关性和分析的简易性方面,在线资源比离线资源更胜一筹。