为了最大程度地减少与强制施用相关的纵向成像和潜在风险的辐射暴露,采取了二维(2D)非对比度轴向轴向单板CT CT,而不是在临床实践中常见的三维(3D)体积CT。然而,很难在纵向成像中找到相同的横截面位置,因此在不同年内捕获的器官和组织存在实质性变化,如图1。在2D腹部切片中扫描的器官和组织与身体成分措施密切相关。因此,增加的位置差异可以准确地分析身体组成的挑战。尽管有这个问题,但尚未提出任何方法来解决2D切片中位置差异的问题。我们的目标是减少位置方差在人体组成分析中的影响,以促进更精确的纵向解释。一个主要的挑战是,在不同年内进行的扫描之间的距离是未知的,因为该切片可以在任何腹部区域进行。图像注册是在其他情况下用于纠正姿势或位置错误的常用技术。但是,这种方法不适合解决2D采集中的平面运动,其中一种扫描中出现的组织/器官可能不会出现在另一种扫描中。基于参考。13,图像协调方法分为两个主要组:深度学习和统计方法。值得注意的统计方法包括战斗14及其变体,15-17 Convbat,18和贝叶斯因子回归。19然而,与生成模型不同,统计方法通常缺乏对我们方案至关重要的生成能力。基于深度学习的现代生成模型最近在生成和重建高质量和现实的图像方面取得了重大成功。20 - 26生成建模的基本概念是训练生成模型以学习分布,以便生成的样品 ^ x〜pdð ^xÞ来自与训练数据分布x〜pdðxÞ的分布相同。27通过学习输入和目标切片之间的联合分布,这些模型可以有效地解决注册的局限性。变化自动编码器(VAE),28是一种生成模型,由编码器和解码器组成。编码器将输入编码为可解释的潜在分布,解码器将潜在分布的样本解码为新数据。生成对抗网络(GAN)20是另一种类型的生成模型,其中包含两个子模型,一个生成新数据的生成器模型和一个区分实际图像和生成图像的歧视器。通过玩这个两人Min-Max游戏,Gans可以生成逼真的图像。Vaegan 29将GAN纳入VAE框架中,以创建更好的合成图像。通过使用歧视器来区分真实图像和生成的图像,Vaegan可以比传统的VAE模型产生更真实和高质量的图像。但是,原始的vaes和gan遭受了缺乏对产生图像的控制的局限性。有条件的GAN(CGAN)30和CONDINATION VAE(CVAE)31解决了此问题,该问题允许生成具有条件的特定图像,从而对生成的输出提供了更多控制。但是,这些条件方法中的大多数都需要特定的目标信息,例如目标类,语义图或热图,在测试阶段32作为条件,这在我们的情况下是不可行的,因为我们没有任何可用的直接目标信息。
“Vae soli(1)”,如果士兵想要取得胜利,他就永远不会孤军奋战。今天,我们的年轻军官学员比昨天更加清楚,他们将参与到与他们不同的联盟和国际伙伴中,因此他们必须了解他们的语言、文化和军事特点。此外,如果他们能够与这些未来的合作伙伴建立起友谊的纽带,他们的共同效力将更加强大。正是这种在运营绩效逻辑中相互丰富和建立个人联系的首要目标,响应了接收来自大约三十个国家的一百名国际学生,他们与法国同学完成相同的学业,其优点值得强调。
供应链管理 (SCM) 在协调从供应商到消费者的商品和服务流动方面发挥着关键作用,从根本上影响着全球的商业运作。然而,传统的 SCM 面临着重大的局限性,例如在处理复杂数据结构和适应快速的市场变化方面效率低下,这削弱了运营效率。深度学习技术在 SCM 中的应用越来越被人们认为至关重要,它为实时可视性、预测分析和增强决策能力提供了强大的工具。我们提出了一种 VAE-GNN-DRL 网络模型,该模型集成了变分自动编码器 (VAE)、图神经网络 (GNN) 和深度强化学习 (DRL),通过高效处理和分析复杂的供应链数据来应对这些挑战。
- 收集并衡量机构及其职责范围内的人口的培训需求 - 管理培训计划的制定和实施 与工会组织一起组建和管理内部委员会,为培训计划做准备 军事基础设施专家 - 为上级机构选择服务提供商提供建议 - 告知员工他们个人的培训权利,以满足他们的职业发展愿望 - 参与培训预算的管理并建立状态报告 - 建立培训行动报告 - 成为我们部长级联系人的通讯员 - 完成主任的仪表板 - 管理与 VAE 和 CPF 相关的文件 - 确保管理“HSCT 培训”采购卡
AudioLDM 设计概览,用于文本到音频生成(左)和文本引导的音频处理(右)。在训练期间,潜在扩散模型 (LDM) 以音频嵌入为条件,并在 VAE 学习的连续空间中进行训练。采样过程使用文本嵌入作为条件。给定预训练的 LDM,零样本音频修复和风格迁移以反向过程实现。前向扩散块表示用高斯噪声破坏数据的过程(参见公式 2)。来源:arXiv (2023)。DOI:10.48550/arxiv.2301.12503
图1。深度学习技术的分类学。图改编自参考[70]。MLP: Multi-Layer Perceptron; CNN: Convolutional Neural Network; ResNet: Residual Neural Net- work; GCN: Graph Convolutional Network; GAT: Graph Attention Network; RNN: Recurrent Neural Network; LSTM: Long Short-Term Memory; GRU: Gated Recurrent Unit; SAT: Structure- Aware Transformer; GAN: Generative Adversarial Network; AE: Auto-Encoder; SAE:稀疏自动编码器; DAE:DENOISISIS AUTOCODER; CAE:CASSITIVE AUTOCONEDER; VAE:VIRIATIANIT AUTOCONECODER; SOM:自组织映射; RBM:限制性Boltzmann Machine; DBN; DBN; DBN:深信信念网络:DRL:DRL:DRL:深度强化:深度强化学习。
数据增强方法是手工设计或基于模型的。手工设计的方法,例如视觉效果中的颜色变化和随机裁剪或DNA序列中的突变,需要人类输入,并且通常是特定于数据的,并且与复杂的数据进行了斗争,在这些数据中,小变化显着影响语义。语义与无关的方法(例如添加噪声)存在,但并不总是有效的。此外,手工设计的方法需要更多样本来减轻微妙的语义变化中的风险,这在诸如生物学之类的昂贵域中挑战。使用生成模型(VAE,GAN,扩散)的基于模型的方法改善了视力任务和监督学习的训练,但面临着对多样性,概括和对外部数据的依赖的担忧。
对静电定义的半导体量子点进行了深入研究,以进行固态量子计算[1-4]。栅极电极旨在分别控制电化学电位和隧道屏障[5,6]。但是,这些设备参数在非单调方面变化,并且并不总是可以通过应用的门电压来预测,从而使设备调整为复杂且耗时的任务。全自动设备调整对于半导体Qubit电路的可扩展性至关重要。调整静电定义的量子点设备可以分为三个阶段。第一个阶段是超粗调节,它包括设置栅极电压,以创建电子或孔的结合潜力。第二阶段(称为粗调)着重于识别和导航量子点设备的不同操作机制。第三阶段,称为精细调整,涉及优化特定的电荷转换集。最近已经实现了第一个调整阶段的完整自动化[7]。使用卷积神经网络证明了自动粗调调谐,以识别双量子点状态[8]并达到任意电荷状态[9]。模板匹配也用于导航到单电子制度[10]。在此阶段,虚拟栅极电极可用于独立控制每个量子点的电化学电位[11,12]。但是,这些方法仅允许优化从执行的测量值估算并依赖校准的设备参数。vae以前关于自动调节的工作重点是通过系统修改栅极电压来实现两个量子点之间隧道耦合的目标值[13,14]。在这里,我们演示了一种自动化方法,用于同时调整多个设备参数,例如隧道速率和点间隧道耦合,而无需参数化所需的测量功能。我们的方法基于变异自动编码器(VAE)。
自动化法律文本的摘要构成了一个重大挑战,这是由于法律文档的复杂和专业性质。尽管最近在自然语言文本摘要的强化学习方面取得了进展,但其在法律领域中的应用效果不佳。本文介绍了SAC-VAE,这是一种专门为法律文本摘要而设计的新颖的增强学习框架。我们利用差异自动编码器(VAE)将高维状态空间凝结到更易于管理的较低尺寸特征空间中。这些压缩特征随后被软性演员批评(SAC)算法用于政策学习,从而促进了从法律文本中自动产生的摘要。通过全面的实验,我们从经验上证明了SAC-VAE框架在法律文本摘要中的有效性和出色性能。