在许多应用中,包括 RF 设计的 VGA/PGA,具有 dB 线性(dB 尺度上的线性关系)增益特性的放大器是首选,因为它在 AGC 环路中使用时可以实现恒定的稳定时间 [13–15]。这种关系在 BJT 技术中很容易实现,其中增益与控制信号呈指数关系 [16–18]。对于 MOS 器件,尽管指数关系存在于亚阈值区域并可提供较宽的增益控制范围 [19],但饱和区有利于降低噪声并增加带宽 [20],并且由于后者的平方关系,需要指数 VI 转换电路来实现指数增益控制关系 [21]。实现指数转换器的一些方法采用 BiCMOS 技术[22–24]、寄生双极晶体管[20]或使用提供伪指数函数近似的 CMOS 电路[25,26]。
Vision Transformers(VIT)已成为代表学习中最新的架构,利用自我注意的机制在各种任务中脱颖而出。vits将图像分为固定尺寸的补丁,将其限制为预定义的大小,并需要进行预处理步骤,例如调整大小,填充或裁剪。这在医学成像中构成了挑战,尤其是在肿瘤等不规则形状的结构中。一个固定的边界盒子量产生的输入图像具有高度可变的前景与地面比率。进行医学图像可以降低信息并引入人工制品,从而影响诊断。因此,对感兴趣区域的裁缝量化作物可以增强特征代表能力。此外,大图像在计算上是昂贵的,尺寸较小,风险信息损失,表现出计算准确性的权衡。我们提出了Varivit,这是一种改进的VIT模型,该模型制定了用于处理可变图像尺寸的同时保持连贯的贴片大小。varivit采用新颖的位置嵌入调整大小方案,用于可变数量的斑块。我们还将在变量内实施一种新的批处理策略,以降低计算复杂性,从而导致更快的培训和推理时间。在我们对两个3D脑MRI数据集的评估中,变量超过了胶质瘤基因型预测和脑肿瘤分类中的香草vits和重新连接。它的F1得分分别为75.5%和76.3%,学习了更多的判别特征。与常规体系结构相比,我们提出的批处理策略将计算时间最多减少了30%。这些发现强调了图像表示学习中变量的功效。关键字:视觉变压器,建筑,表示,肿瘤分类
具有较大控制面积的系统取决于负载,可能需要增加控制头来提高二次曲线或比例曲线,以确保不会出现导致环境控制不令人满意的下溢情况。但是,增加控制头会导致整体能源效率降低。例如,如果每次投诉温度时,设施经理都会增加控制头直到问题消失,那么能源也会节省,因为系统将以接近全速运行。这种循环的滚雪球效应是系统将超过 ASHRAE 设置的效率参数。更大的控制区域往往会导致迭代系统调整以消除潜在的失误,从而增加能源成本。
引言:量子态断层扫描是量子信息学中的一项基本任务,旨在根据实验数据构建未知量子态的经典描述。量子态断层扫描的一个关键问题是:构建一个估计量的经典描述所需的最小样本数(未知状态的副本)是多少,该估计量的迹线距离与真实状态的迹线距离极有可能为 ε 接近?虽然这个问题已经在 qudit 系统中得到了广泛的解决,但对于连续变量 (CV) 系统 [1-3],例如以无限维希尔伯特空间为特征的玻色子和量子光学系统,这是一个悬而未决的问题。关于 CV 系统量子态断层扫描的文献主要依赖于相空间近似 [4-7],而相空间近似——至关重要的是——没有提供关于迹线距离(这是量子态之间距离最有意义的概念 [8、9])的任何严格性能保证。鉴于量子光学平台(以 CV 系统为例)在量子计算、通信和计量等量子技术中发挥的关键作用,文献中的这一空白尤其令人惊讶。我们的工作填补了这一空白,从轨迹距离的角度对 CV 系统的量子态断层扫描进行了详尽的分析。我们分析了三类状态的断层扫描:
输出频率................................................可选 0 至 120 Hz 电机电压.................................... 200、208、220、230;380、400、415、440、460;550 或 575 VAC 连续输出电流........................................100% 额定电流 输出电流限制设置............可调至驱动器额定值的 110% 电流限制计时器....................................0 至 60 秒或无限 可调最大速度....................从最小速度设置到 120 Hz 可调最小速度....................从最大速度设置到 120 Hz速度设定为 0 Hz 加速时间................................至基本速度 3,600 秒 减速时间................................从基本速度加速至 3,600 秒 起步转矩时间........................................0.0 至 0.5 秒(电机铭牌电流的 1.6 倍) 启动电压.........................................................................0 至 10% 直流制动时间.........................................................0 至 60 秒 直流制动启动.........................................................0 至最大频率 直流制动电流.........................................................电机额定电流的 0 至 50%
输出频率 ..................................................可选0至120 Hz 电机电压 .............................................. 200、208、220、230;380、400、415、440、460;550 或 575 VAC 连续输出电流 ..............................................100% 额定电流 输出电流限制设置 ..............................可调至驱动器额定值的 110% 电流限制定时器 ..............................................0 至 60 秒或无限 可调最大值。速度 .................从最小值。速度设置为 120 Hz 可调最小值。速度 ......................从最大值。速度设置为 0 Hz 加速时间 ................................ 至基本速度 3,600 秒 减速时间 .............................. 从基本速度到 3,600 秒 起步转矩时间 ..............................................0.0 至 0.5 秒(电机铭牌电流的 1.6 倍) 启动电压 ..............................................................0 至 10% 直流制动时间 ..............................................................0 至 60 秒 直流制动启动 ................................................0 至最大频率 直流制动电流 ..............................................0 至额定电机电流的 50%
KVL 5000密钥变量加载程序(KVL)模块最初是不合规的,必须配置以在批准的操作模式下运行。加密货币官应配置模块以以批准的操作方式进行操作。为了使模块在批准的模式下运行,必须正确安装,初始化和配置模块,其中包括为加密货币官(CO)和用户角色创建密码。第2.3.1节中记录的是该模块在FIPS 140-3批准的整体安全级别2中使用的其他配置设置。设置菜单中的KVL主机应用程序图形用户界面的设置菜单将用于确定KVL 5000是否在批准模式下运行。在批准模式下操作时,显示器将指示。
1 这些研究寻找的是连续日平均值低于某个阈值的时间段,每 24 小时截止一次。2 我们将选择范围限制在那些似乎对研究 VRE 干旱有用的方法上。不同领域的其他方法
摘要 — 提出了一种可变阈值电压保持器电路技术,用于同时降低多米诺逻辑电路的功耗和提高速度。在电路运行期间,保持器晶体管的阈值电压会动态修改,以减少争用电流,而不会牺牲抗噪性。与标准多米诺 (SD) 逻辑电路相比,可变阈值电压保持器电路技术可将电路评估速度提高高达 60%,同时将功耗降低 35%。与 SD 电路相比,使用所提出的技术可以增加保持器尺寸,同时保持相同的延迟或功率特性。与具有相同评估延迟特性的 SD 电路相比,所提出的多米诺逻辑电路技术可提供高 14% 的抗噪性。与具有相同保持器尺寸的 SD 电路相比,还提出了对保持器晶体管进行正向体偏置以提高抗噪性。结果表明,通过应用正向和反向体偏置保持电路技术,可以同时提高多米诺逻辑电路的抗噪能力和评估速度。