电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。
摘要 人工神经网络等受大脑启发的计算概念已成为经典冯·诺依曼计算机架构的有前途的替代品。光子神经网络的目标是在光子基底中实现神经元、网络连接和潜在学习。本文,我们报告了通过高质量垂直腔面发射激光器 (VCSEL) 阵列开发快速、节能的光子神经元纳米光子硬件平台。开发的 5 × 5 VCSEL 阵列通过均匀制造结合对激光波长的单独控制提供高光学注入锁定效率。注入锁定对于基于 VCSEL 的光子神经元中信息的可靠处理至关重要,我们通过注入锁定测量和电流诱导光谱微调证明了 VCSEL 阵列的适用性。我们发现我们研究的阵列可以轻松调整到所需的光谱均匀性,因此表明基于我们技术的 VCSEL 阵列可以作为下一代光子神经网络的高能效和超快光子神经元。结合完全并行的光子网络,我们的基板有望实现达到10 GHz 带宽的超快速操作,并且我们表明,基于我们的激光器的单一非线性变换每个 VCSEL 仅消耗约 100 fJ,与其他平台相比,具有很强的竞争力。
垂直腔面发射激光器 (VCSEL) 是众多工业和消费产品中非常重要的光源。主要应用领域是数据通信和传感。数据通信行业使用基于 GaAs 的 VCSEL 进行光学互连,这是一种短距离光纤通信链路,用于在数据中心和超级计算机内的单元之间以高速率传输大量数据。在传感领域,VCSEL 广泛应用于消费产品,如智能手机(例如面部识别和相机自动对焦)、计算机鼠标和汽车(例如手势识别和自动驾驶的激光雷达)。在这项工作中,我们开发了一种基于物理的先进数据通信 VCSEL 等效电路模型。该模型有助于与驱动器和接收器 IC 进行协同设计和协同优化,从而实现具有带宽受限 VCSEL 和光电二极管的更高数据速率收发器。该模型还有助于理解 VCSEL 内的每个物理过程如何影响 VCSEL 的静态和动态性能。它已被用于研究载流子传输和捕获对 VCSEL 动力学的影响。这项工作还包括在氮化硅光子集成电路 (PIC) 上微转移印刷基于 GaAs 的单模 VCSEL。这种 PIC 越来越多地用于例如紧凑且功能强大的生物光子传感器。VCSEL 的转移印刷使 PIC 上集成节能光源成为可能。底部发射的 VCSEL 印刷在 PIC 上的光栅耦合器上方,并使用光反馈来控制偏振,以便有效耦合到氮化硅波导。生物传感应用所需的波长调谐是通过直流调制实现的。
快速可靠的响应与现有的内置光电二极管方法形成鲜明对比的是眼部安全保护,其中光电二极管信号容易受到非眼安全性相关因素(例如VCSEL模块前面的反射对象)引起的故障。此外,TARA2000-自动安全的互锁环更易于集成,因为其读出电路仅需要一个和门或MOSFET。相比之下,光电二极管的复杂读出电路需要更高数量的组件,从而导致较高的物质成本,以及对对眼睛安全风险的事件的较慢响应。
I.在高性能计算系统,数据中心和其他短距离光学网络中,垂直腔表面发射激光器(VCSEL)是高速和功率的高速和功率短次光学互连(OIS)的首选光源[1]。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络[2]和光网络,需要在温度较大的范围内运行,例如从-40到125°C。VCSEL是OI温度敏感的组件,成本和功率效率所需的未冷却/未加热的操作,因此需要在温度依赖性降低的VCSEL上,在温度范围更大的情况下运行。在高温下降低温度依赖和改善的VCSER性能也将使基于VCSEL的光学收发器在高性能计算系统中的共包装受益[3]。
路东来 1, 2 , 何健 1, 4 , 李伟忠 5 , 陈斯凯 1 , 刘健 1, 3 , 吴南健 1, 2, 3 , 于宁美 4 , 刘丽媛 1, 2, 3 , 陈勇 6 , 习晓 5 和 南琪 1, 3
第二个亚洲VCSEL日是专门用于垂直腔体发射激光器(VCSEL)的首要事件。基于2023年首届活动的成功,该会议将聚集来自Asai的主要科学家,工程师和行业专家,并组成了德国和俄罗斯的两名嘉宾演讲者,以分享其最新的研究,创新以及VCSEL技术领域的应用。
摘要 - 在过去的几十年中,由于几个有利的功能,垂直腔表面发射激光器(VCSELS)作为短距离高数据速率网络的主要技术。这些包括低功耗,高调制速度,低成本和紧凑的尺寸。最近,VCSELS的这些固有特征也使它们非常适合各种光学无线通信(OWC)应用程序,尤其是对于短途链接,最大多达几米。本文回顾了新兴OWC域内VCSEL的一系列新颖而有希望的应用程序:数据中心(DCS),空间和恶劣环境。我们介绍并讨论在这些新兴方案中设计,实施和测试的不同基于VCSEL的OWC系统。对于DCS方案,我们提出了一种新的方法,可以建立能够使用单个VCSEL达到40 GBIT/s的数据速率的OWC链接。在太空环境中,创新的OWC系统可以支持在航天器外或小卫星内放置在视线中的电子元素之间的数据通信。VCSEL进行数据传输。在这里,为高能量物理(HEP)实验的董事会链接(B2B)链路设计了10 GBIT/S OWC系统。由于空间和HEP应用表现出极端条件,因此对OWC系统,特别是对VCSEL进行了测试,以评估其在强机械,热和辐射应力下的行为。
实现单模式发射的最简单方法是利用一个小的氧化孔(<3μm)。但是,由于串联电阻的增加,这强烈限制了输出功率,并使热滚动局部恶化。如[6]中所述,已经提出了几种设计,以提高单模内部的产量功率,例如基于表面浮雕的圆形VCSEL [15],[16]或圆形设备,其Epi架构具有氧化物和静电波之间的特定对齐方式,通过修改几乎没有P-dbriairs [6] [6]。两种解决方案都呈现一个模式功率,左右为4÷6 mW。但是,对于使用VCSEL阵列或大型主动区域设备可以实现的功率水平仍然很低,具有多模式发射,因此较低的光谱纯度。例如,具有尺寸为40×10μm2的矩形活性区域的VCSEL报告了数十个MW的多模式功率[17],[18]。