实现单模式发射的最简单方法是利用一个小的氧化孔(<3μm)。但是,由于串联电阻的增加,这强烈限制了输出功率,并使热滚动局部恶化。如[6]中所述,已经提出了几种设计,以提高单模内部的产量功率,例如基于表面浮雕的圆形VCSEL [15],[16]或圆形设备,其Epi架构具有氧化物和静电波之间的特定对齐方式,通过修改几乎没有P-dbriairs [6] [6]。两种解决方案都呈现一个模式功率,左右为4÷6 mW。但是,对于使用VCSEL阵列或大型主动区域设备可以实现的功率水平仍然很低,具有多模式发射,因此较低的光谱纯度。例如,具有尺寸为40×10μm2的矩形活性区域的VCSEL报告了数十个MW的多模式功率[17],[18]。
垂直腔面发射激光器 (VCSEL) 是众多工业和消费产品中非常重要的光源。主要应用领域是数据通信和传感。数据通信行业使用基于 GaAs 的 VCSEL 进行光学互连,这是一种短距离光纤通信链路,用于在数据中心和超级计算机内的单元之间以高速率传输大量数据。在传感领域,VCSEL 广泛应用于消费产品,如智能手机(例如面部识别和相机自动对焦)、计算机鼠标和汽车(例如手势识别和自动驾驶的激光雷达)。在这项工作中,我们开发了一种基于物理的先进数据通信 VCSEL 等效电路模型。该模型有助于与驱动器和接收器 IC 进行协同设计和协同优化,从而实现具有带宽受限 VCSEL 和光电二极管的更高数据速率收发器。该模型还有助于理解 VCSEL 内的每个物理过程如何影响 VCSEL 的静态和动态性能。它已被用于研究载流子传输和捕获对 VCSEL 动力学的影响。这项工作还包括在氮化硅光子集成电路 (PIC) 上微转移印刷基于 GaAs 的单模 VCSEL。这种 PIC 越来越多地用于例如紧凑且功能强大的生物光子传感器。VCSEL 的转移印刷使 PIC 上集成节能光源成为可能。底部发射的 VCSEL 印刷在 PIC 上的光栅耦合器上方,并使用光反馈来控制偏振,以便有效耦合到氮化硅波导。生物传感应用所需的波长调谐是通过直流调制实现的。
垂直腔体发射激光器(VCSEL)是高性能计算系统,数据中心和其他短距离光学网络中高速和功率短得分光学互连(OIS)的首选光源。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络和光网络中,需要在温度范围更大的温度范围内运行,例如从 - 40到125°C。VCSEL是OI温度最敏感的组件,并且成本和功率效率所需的未冷却/未加热的操作需要降低温度依赖性的VCSEL,在温度范围更大的情况下运行。VCSER性能的温度依赖性源于光谱和共振波长偏移之间的光学增益和不匹配的变化。减轻这些效果的方法包括使用具有适当增益式失调的VCSEL和增益工程,以扩大光学增益频谱。本文研究了在大温度范围内优化运行的850 nm VCSEL。关键研究包括阈值 - 旧电流与性能参数(纸张A)的相关性和chire QW VCSels的设计,以稳定跨温度(Pa-per)。洞察设计为极端环境设计强大的VCSEL。
摘要 - 在过去的几十年中,由于几个有利的功能,垂直腔表面发射激光器(VCSELS)作为短距离高数据速率网络的主要技术。这些包括低功耗,高调制速度,低成本和紧凑的尺寸。最近,VCSELS的这些固有特征也使它们非常适合各种光学无线通信(OWC)应用程序,尤其是对于短途链接,最大多达几米。本文回顾了新兴OWC域内VCSEL的一系列新颖而有希望的应用程序:数据中心(DCS),空间和恶劣环境。我们介绍并讨论在这些新兴方案中设计,实施和测试的不同基于VCSEL的OWC系统。对于DCS方案,我们提出了一种新的方法,可以建立能够使用单个VCSEL达到40 GBIT/s的数据速率的OWC链接。在太空环境中,创新的OWC系统可以支持在航天器外或小卫星内放置在视线中的电子元素之间的数据通信。VCSEL进行数据传输。在这里,为高能量物理(HEP)实验的董事会链接(B2B)链路设计了10 GBIT/S OWC系统。由于空间和HEP应用表现出极端条件,因此对OWC系统,特别是对VCSEL进行了测试,以评估其在强机械,热和辐射应力下的行为。
电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。
VCSELs and ToF Modules for 3D Sensing 用于三维传感的VCSEL和ToF模块 Xiaochi Chen 陈晓迟 General Manager, Vertilite Co., Ltd 总经理,常州纵慧芯光半导体科技有限公司 Application of Compound Semiconduc- tor in Millimeter Wave Communication 化合物半导体的毫米波通信应用 Chunjiang Li 李春江 Vice General Manager, Chengdu HiWafer Semiconductor Co., Ltd. 副总经理,成都海威华芯科技有限公司 NAURA Solutions for Si Epitaxy and SiC Growth Applied for Power Devices NAURA 的Si外延和SiC材料在功率器件领域的 解决方案 Boyu Dong 董博宇 Vice president&CVD Business Unit General Manager, Beijing NAURA Microelectronics Equipment Co.,Ltd 副总裁兼 CVD 事业部总经理,北京北方华创微 电子装备有限公司 Advanced Plasma Processing Solutions for High Performance VCSELs and EELs: Feature Etching and Thin Film Deposi- tion. Enabling Cost Down Per Wafer and Critical Device Performance 先进等离子加工技术于高性能VCSEL和EEL的 解决方案:特征蚀刻和薄膜沉积。降低晶圆成 本及关键设备性能
简介。对非经典硬件进行脑力启发的计算的研究已在统计中引起了人们的关注。光子平台由于可能实现高带宽,能源效率以及对光学的内在平行性1-3的可能性的可能性而表现出巨大的潜力。在我们的方法中,我们将衍射耦合(DC)1,3 - 6的概念与垂直腔表面发射激光器(VCSELS)结合在一起。DC提供了并行性,并具有高能实施神经网(NNS)的潜力。使用DC的实验实现包括组合的光电模拟计算4,衍射深NNS 3、5,相干VCSEL NNS 1和储层计算(RC)6。vcsels用于多样化的实验实现,用于神经启发的信息处理,最近出现了1、7 - 11。vc- sels可以用作光学深NN体系结构1的节点或RC实现9 - 11中的单个神经元的尖峰行为7。RC 12 - 14的概念简单性允许实施具有当前或近期技术的大规模光子NN,并是研究涉及进一步优化的更复杂方案的理想跳板。许多光子RC实现基于长外部腔体内的时间多头型的高维度15。在这些方法中,提高网络会降低处理速度。我们的方案基于外部空腔16 - 18中的DC,该腔体已证明对更多的发射器可扩展。在这里,我们提出了一种方法,该方法使用24个耦合VCSEL的网络来利用光合并行性,其中每个VCSEL都与一个储层节点相对应,从而避免了时间多路复用的速度惩罚。尽管对于单独的可寻址VCSEL,电气接触设计的局限性可防止
第二个亚洲VCSEL日是专门用于垂直腔体发射激光器(VCSEL)的首要事件。基于2023年首届活动的成功,该会议将聚集来自Asai的主要科学家,工程师和行业专家,并组成了德国和俄罗斯的两名嘉宾演讲者,以分享其最新的研究,创新以及VCSEL技术领域的应用。
生理网络涉及多组分系统,其反馈循环有助于自我调节。生理现象伴随着时间延迟效应,可能导致其行为的振荡甚至混乱的动态。类似动力学在受延迟光学反馈的半导体激光器中发现,其中动态通常包括时间延迟签名。在半导体激光器的许多应用中,对时间延迟签名的抑制至关重要,因此为此目的采用了几种方法。在本文中,提出了实验结果,其中使用的光子过滤器用于抑制延迟光学反馈效应的半导体激光器中的时间延迟特征。使用了两种类型的半导体激光器:离散模式半导体激光器和垂直腔体发射激光器(VCSELS)。表明,通过使用光子滤波器,对时间延迟签名的完全抑制可能会在离散模式半导体激光器中受到影响,但是签名的残余仍然存在于VCSELS中。这些结果有助于更广泛地理解复杂系统中的时间延迟效应。探索光子过滤器作为抑制时间延迟签名的一种手段,为在不同领域的潜在应用开辟了途径,从而扩展了这项研究的跨学科性质。
Algainp材料技术在过去几年中一直在稳步发展,从而导致高性能的边缘发射激光〜EEL!1和红色的垂直腔表面发射激光器〜VCSEL!。2,3相对于Algainp系统,藻类受益于改进的指数对比度,降低的电阻和热电阻率,更成熟的加工技术,以及将碳用作p-型掺杂剂的能力,以实现出色的掺杂剂控制和稳定性。4然而,将基于ALGAINP的活性区与基于C的基于藻类的DBR集成是通过较差的载流子转运到AlgaInp活性区域的困难,并且无法将C用于Algainp合金中的P进行P。先前关于Algainp/ Algaas异质结构激光二极管的报道已在连接处的P侧使用Zn或Mg掺杂,以改善孔注射,5,6消除了使用藻类使用的潜在关键优势,并进一步使穿着物质扩散特征复杂化。7,8此类困难导致实施相对较厚〜8 L!红色VCSELS中的光腔6