微处理器和新型建筑材料的发展显著优化了 LVDT 的性能、范围和拥有成本,使其成为优于其他位移技术的技术选择。如今,LVDT 传感器提供高温版本、扩展范围、更小的行程、抗辐射和其他特性,以满足更广泛行业的要求。它们甚至作为遥测系统的一部分,用于测量参数并向远程监控系统提供反馈,远程监控系统将信息存储在云中,供操作员访问或进一步处理。交流和直流版本 LVDT 有交流和直流版本。最初,LVDT 是交流操作的,不包含任何内部电子设备。因为它是一个变压器,所以 LVDT 基本上是一个交流输入/交流输出设备。它需要在初级绕组上施加交流激励电压,并在次级绕组上产生交流输出。外部信号调节器提供激励信号并测量输出。它解调低幅度交流输出并产生直流电压、电流或数字输出,供仪表、PLC 和其他控制系统使用。 (见图2)
简介及时准确地跟踪 COVID-19 疫苗产品对于卫生部监督和监测 COVID-19 疫苗库存至关重要。目的本政策和用户指南将为社区药剂师提供一种一致的方法来利用 COVID-19 疫苗分发跟踪系统 (VDTS) 跟踪和记录疫苗库存。背景:卫生部和所有参与 COVID-19 疫苗分发和管理的组织都有责任确保疫苗从交付到接种都有记录。为了确保对 COVID-19 疫苗保持适当的问责制和责任制,开发了一种快速录入工具来每天捕获疫苗库存。在许多情况下,COVID-19 疫苗将直接从制造商运送到疫苗中心。从中心,疫苗将被重新分配到全省的小型诊所或其他中心。COVID-19 VDTS 是一款易于使用的应用程序,可跟踪 COVID-19 疫苗的运输、分发和使用情况。它是一个独立系统,不与省级疫苗库存库 (Panorama) 交互。政策从 2022 年 10 月 1 日开始,所有接收 COVID-19 疫苗的社区药房都将使用 VDTS。那些已被其组织确定在 VDTS 中输入信息的人,将需要填写申请表,提交给药物计划和扩展福利部门以获得批准。请参阅疫苗分发跟踪系统工作标准的配置访问权限流程。每个用户都应在将数据输入系统之前完成培训。作为批准用户,您:
• 通用非对称双向 • 集成 110 Ω 标称接收器线路通信终端电阻 • 采用 3.3 V 单个电源供电 • 数据速率大于 125 Mbps SN65LVDT14 将一个 LVDS 线路驱动器 • 流通引脚分布与四个端接 LVDS 线路接收器组合在一个 • LVTTL 兼容逻辑 I/O 封装中。它设计用于基于 LVDS 的记忆棒的记忆棒™ 端 • 总线引脚上的 ESD 保护超过 12 kV 接口扩展。• 达到或超过 ANSI/TIA/EIA-644A LVDS 标准的要求 SN65LVDT41 将四个 LVDS 线路驱动器与一个端接 LVDS 线路接收器组合在一个 • 20 引脚薄型小外形封装中。它设计用于封装 (PW) 的主机端,具有 26 Mil 端子间距,基于 LVDS 的记忆棒接口扩展。(1) 符合 JEDEC 和
• 通用非对称双向 • 集成 110 Ω 标称接收器线路通信终端电阻 • 采用 3.3 V 单个电源供电 • 数据速率大于 125 Mbps SN65LVDT14 将一个 LVDS 线路驱动器 • 流通引脚分布与四个端接 LVDS 线路接收器组合在一个 • LVTTL 兼容逻辑 I/O 封装中。它设计用于基于 LVDS 的记忆棒的记忆棒™ 端 • 总线引脚上的 ESD 保护超过 12 kV 接口扩展。• 达到或超过 ANSI/TIA/EIA-644A LVDS 标准的要求 SN65LVDT41 将四个 LVDS 线路驱动器与一个端接 LVDS 线路接收器组合在一个 • 20 引脚薄型小外形封装中。它设计用于封装 (PW) 的主机端,具有 26 Mil 端子间距,基于 LVDS 的记忆棒接口扩展。(1) 符合 JEDEC 和
本文介绍了一种基于电压差分跨导放大器 (VDTA) 的波有源滤波器的高阶电压和电流模式低通或高通滤波器。针对波有源滤波器的基本有源构建模块,提出了波等效变量技术和拓扑模拟以及使用波变量技术的操作实现。将所提出的波等效技术与正确选择端子连接一起应用于波有源滤波器。本文提出,实现波有源滤波器的基本元件是串联电感和并联接地电容。通过使用 SPICE 模拟和 0.18 µm TSMC CMOS 技术参数,实现了最低功耗为 ±0.82 V 的 4 阶低通和高通巴特沃斯滤波器,从而验证了所提出的波有源滤波器。
其他产品信息 本数据表中包含的有关产品应用的信息仅供客户参考。Active Sensors 不对产品是否适合任何特定设计应用、环境或其他情况提供任何保证或陈述,除非随后在产品销售和购买合同中达成一致。此外,Active Sensors 不对其产品在关键控制应用中的保证或担保,这些应用通常是生命支持系统和航空和核工业,产品故障可能导致受伤、生命损失或灾难性的财产损失。因此,客户应自行确定实际性能要求,随后确定产品是否适合任何特定设计应用和产品使用环境。© Active Sensors
LVDT(线性可变差动变压器)是一种机电设备,其产生的电输出与单独的可移动磁芯的位移成比例。它由三个线圈组成,其中一个是变压器的初级线圈。另外两个线圈通常关于初级线圈对称,在正常运行时以相反方向串联连接以形成变压器次级线圈。当可移动变压器磁芯相对于两个次级绕组居中时,它们将具有相同幅度的感应输出电压,但极性或相位将相反。因此,次级线圈的净输出电压将为零。这个位置通常称为电气零位。当磁芯从零位移位时,一个次级线圈的输出会增加,而另一个线圈的输出会减少,从而产生与磁芯位移相关的非零差动输出电压。当磁芯从零位的一侧移动到另一侧时,该输出电压的相位会改变 180°。
注释 1 V A 和 V B 表示检测到的正弦波的平均偏差 (MAD)。注意,为了使此传递函数线性表示正位移,LVDT 的 V A 和 V B 之和必须与行程长度保持不变。请参见“工作原理”。另请参见图 7 和图 12 中的 R2。 2 从 T MIN 到 T MAX ,仅由 AD598 引起的总误差由增益误差、增益漂移和失调漂移相结合决定。例如,AD598AD 从 T MIN 到 T MAX 的最坏情况总误差计算如下:总误差 = +25 ° C 时的增益误差(± 1% 满量程)+ –40 ° C 至 +25 ° C 之间的增益漂移(FS 的 50 ppm/ ° C × +65 ° C)+ –40 ° C 至 +25 ° C 之间的失调漂移(FS 的 50 ppm/ ° C × +65 ° C)= ± 1.65% 满量程。请注意,满量程的 1000 ppm 等于满量程的 0.1%。满量程定义为最大正输出和最大负输出之间的电压差。3 仅 AD598 的非线性,以满量程的 ppm 为单位。非线性定义为 AD598 输出电压与直线的最大测量偏差。直线由产生的最大满量程负电压与产生的最大满量程正电压连接而成。4 参见传递函数。5 该偏移指的是 (V A –V B )/(V A +V B ) 输入,跨越满量程范围 ± 1。[要使 (V A –V B )/(V A +V B ) 等于 +1,V B 必须等于零伏;相应地,要使 (V A –V B )/(V A +V B ) 等于