53. LNICST – 计算机科学社会信息学和电信工程研究所 (LNICST) 2019 年讲义,无处不在的通信和网络计算丛书,“车载自组织网络安全中实体信任评估的 NB-FTBM 模型”,由 Springer - Cham -Nature 出版,瑞士,第 276 卷,第 173-187 页,2019 年,DOI https://doi.org/10.1007/978-3-030-20615-4-13,印刷版 ISBN 978-3-030-20614-7,ISBN 978-3-030-20615,2019 年 5 月 16 日。
T.Krishnaprasath 先生关于 Phython + 机器学习的 FDP 2020.12.21 至 2020.12.30 KrishnaKumar L 先生关于 Phython + 机器学习的 FDP 2020.12.21 至 2020.12.30 Jeevanatham G 先生关于 Phython + 机器学习的 FDP 2020.12.21 至 2020.12.30 Gnanakumari R 女士关于 Phython + 机器学习的 FDP 2020.12.21 至 2020.12.30 AICTE 培训与学习(ATAL)学院关于“人工智能”的在线 FDP AICTE 培训与学习(ATAL)学院关于“人工智能”的在线 FDP
和创业活动。关于 FDP:这项关于计算机视觉、医学成像和物联网应用的人工智能 (AI) 的教师发展计划 (FDP) 将帮助教育工作者和研究人员了解人工智能基础知识以及它如何应用于具有多种安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,重点是将人工智能和物联网用于医学成像,这有助于诊断、医疗保健、农业、零售和监控系统。人工智能在计算机视觉中发挥着关键作用,它基于面部识别、虹膜识别、指纹分析和语音识别实现准确有效的身份验证方法。通过实践活动和现实世界的例子,与会者将获得在教学和研究中有效使用人工智能和不同算法的实用技能。到课程结束时,参与者将准备好将人工智能工具整合到他们的工作中,提高他们用现代技术教学和解决安全挑战的能力。这将使参与者受益,提高他们在这些关键领域的专业知识和教学能力。主要课程内容:•物联网架构、通信协议、计算机视觉简介、大数据分析、IIOT、生物医学和医学图像分析应用。•机器学习基础、数据预处理和数据可视化。监督和无监督学习方法、神经网络和应用。•深度学习方法简介,以及基于DL的其他架构及其应用。•用于计算机视觉、生物识别和医学成像实现的CNN架构。•用于医疗监测、精准农业、医疗诊断、工业应用的AI/IoT。•用于生物医学成像、基于CT扫描/MRI的图像分析、眼底和医学图像分类的AI/ML。•对象检测/跟踪算法,如Yolo等,分割算法,如UNET等。•使用Tensor Flow/PyTorch进行活动/生物识别。•Tensor Flow/Keras/PyTorch/Jupyter和Colab的基础知识。•使用python/MATLAB进行数据预处理和数据可视化。•使用Python/MATLAB进行实践课程。 • 在 Jetson Nano、TX2 和 PYNQ 等硬件平台上实现 CV 和 AI 算法。 • 负责此课程的教师:该课程将由 NIT Warangal 的教师负责;来自 IIT/NIT/IIIT 相关领域的学者受邀在该课程中授课。来自行业的演讲者也有望作为课程的一部分进行演讲。注册费详情:教师和研究学者 750 卢比/- 行业参与者 2250 卢比/-
关于FDP:有关人工智能(AI)的教师开发计划(FDP),用于计算机视觉,医学成像和物联网应用程序将帮助教育者和研究人员了解AI基础知识以及它如何适用于具有多个安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,专注于使用AI和IoT进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:•物联网体系结构,通信协议,计算机视觉简介,大数据分析,IIT,生物医学和医学图像分析应用程序。•机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,神经网络和应用。•深度学习方法的简介和基于DL的其他架构及其应用。•张量流/keras/pytorch/jupyter和colab的基础知识。•CNN架构用于计算机视觉,生物特征和医学成像实现。•IOMT,AI/IOT用于医疗保健监测,精密农业,医疗诊断,工业应用。•用于生物医学成像,CT扫描/MRI/X射线图像分析,眼底和医学图像分类的AI/ML。•活动识别,对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等。•使用Python/Matlab使用数据预处理和数据可视化。•使用Python/Matlab的动手会话。主持此计划的教师:该计划将由NIT Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
1.2。电信技术产品需要大量的资金和较长的妊娠期进行研发和商业化,包括产品从原型转向商业级的额外努力和资源。在以后部分详细阐述的高影响力深度技术项目的情况下,有必要以负担得起的成本建造此类产品,以使该国农村地区的最先进的服务为现实。1.3。请注意电信行业的这种战略需求,并创建了该国的研发可用的大量资本,根据印度政府的各种计划提供不同的融资工具,以开发土著技术和解决方案。1.4。除了现有的研发资金机制外,电信部(DOT)还将利用普遍服务义务基金(USOF)下的年度收款,用于资助技术,产品和服务的研究和开发,目的是为农村和偏远地区提供电信服务。从USOF分配了5%的年度收款,将用于电信行业的资助研发,从2021 - 22年财政年度收取的资金开始。1.5。这些电信技术和解决方案的商业化和采用应为
会议在 MNREDA 主任、IAS 的 Joram Beda 博士的出席下召开,他主持了 CM 太阳能任务招标的开标程序,该招标涉及梅加拉亚邦太阳能离网逆变器的供应、安装、测试、调试和综合维护。技术评估委员会成员在会议开始时进行了介绍,标志着招标编号 MNREDA/2000/2023/10 的资格预审开标开始
这项工作中包含的图形设计师Aryaman的信息是由农业出版物(印度)获得的,从据信是可靠的来源。但是,不仅仅是农业出版物(印度)和作者都保证了本文发布的任何信息的准确性或完整性,也不只是农业出版物(印度),也不应对由于使用此信息而引起的任何错误,遗漏或损害。这项工作的发表是在理解的,即仅农业出版物(印度)及其作者正在提供信息,但并未试图提供工程或其他专业服务。如果需要此类服务,则应需要适当的专业人员的帮助。办公室地址:Just Africulture出版物H8-F,旁遮普大街,Jalandhar联系人号+91-6283921515印刷:jalandhar
关于FDP:有关人工智能(AI)的教师开发计划(FDP),用于计算机视觉,医学成像和物联网应用程序将帮助教育者和研究人员了解AI基础知识以及它如何适用于具有多个安全应用的医学成像和物联网技术。参与者将探索机器学习和深度学习概念,专注于使用AI和IoT进行医学成像,这有助于诊断,医疗保健,农业,零售和监视系统。AI通过基于面部识别,虹膜识别,指纹分析和语音识别的准确有效的身份验证方法,在计算机视觉中起关键作用。通过动手活动和现实世界的例子,与会者将获得实用技能,以有效地使用AI在教学和研究中使用不同的算法。在计划结束时,参与者将准备将AI工具整合到他们的工作中,提高他们通过现代技术来教授和解决安全挑战的能力。这将通过增强他们在这些关键领域的专业知识和教学能力来使参与者受益。主要课程内容:物联网体系结构,通信协议,计算机视觉简介,大数据分析,IIT,生物医学和医学图像分析应用程序。机器学习基础知识,使用数据预处理和数据可视化。监督和无监督的学习方法,神经网络和应用。深度学习方法的简介和基于DL的其他架构及其应用。使用张量流/ Pytorch识别活动/生物识别。使用张量流/ Pytorch识别活动/生物识别。CNN架构用于计算机视觉,生物特征和医学成像实现。AI/IOT用于医疗保健监测,精确农业,医学诊断,工业应用。用于生物医学成像,基于CT扫描/MRI的图像分析,眼底和医学图像分类的AI/ML。对象检测/跟踪算法(例如Yolo等),诸如UNET等分段算法等张量流/keras/pytorch/jupyter和colab的基础知识。使用Python/Matlab使用数据预处理和数据可视化。使用Python/Matlab的动手会话。CV和AI算法在硬件平台上实现,例如Jetson Nano,TX2和Pynq等。主持此计划的教师:该计划将由Nit Warangal的教职员工进行;邀请来自IIT/NIT/IIIT的有关领域的院士在该计划中发表讲座。也有望作为课程的一部分提供行业的演讲者。注册费细节:教师和研究学者Rs.750/ - 行业参与者Rs.2250/ -
M/s. Axis Solar Systems,商店编号 10,Sony Commercial Complex,Prasanthi Nagar Industrial Estate,Kukatpally - 72。联系人: