(4)其他 A. 参赛资格年份为令和204年、令和205年、令和206年。 有关招标及承包的详细信息,请参阅“招标及承包指南”。 通过邮寄方式投标的,必须提前通知投标人,并于投标开始前一天下午5:00点前(若前一天是节假日或休息日,则需提前一天)到达。 代理投标的投标人必须在投标时提交委托书。 参加投标者须在投标前提交《资格审查结果通知书》。 (传真也可以)(c) 如果是通过邮寄方式投标,则重新投标的日期、时间和地点将另行规定,并在稍后执行投标。 (k)其他事项见附件。 如有不清楚的地方等请咨询 (A)投标相关事宜 本田中央会计团承包第2课(TEL:03-3268-3111内线47556)(FAX:03-5269-5135(直通)) (B)规格内容相关事宜 本田仓地勤参谋部指挥通信系统和情报部(TEL:03-3268-3111内线41458)
事件相机具有高时间分辨率、高动态范围、低功耗和高像素带宽等特点,为特殊环境中的物体检测提供了独特的功能。尽管有这些优势,事件数据固有的稀疏性和异步性对现有的物体检测算法提出了挑战。脉冲神经网络 (SNN) 受到人脑编码和处理信息方式的启发,为这些困难提供了潜在的解决方案。然而,在当前的实现中,它们在使用事件相机进行物体检测方面的性能受到限制。在本文中,我们提出了脉冲融合物体检测器 (SFOD),一种基于 SNN 的简单有效的物体检测方法。具体而言,我们设计了一个脉冲融合模块,首次实现了应用于事件相机的 SNN 中不同尺度特征图的融合。此外,通过整合我们在 NCAR 数据集上对主干网络进行预训练期间进行的分析和实验,我们深入研究了脉冲解码策略和损失函数对模型性能的影响。从而,我们建立了基于 SNN 的当前最佳分类结果,在 NCAR 数据集上实现了 93.7% 的准确率。在 GEN1 检测数据集上的实验结果表明,SFOD 实现了 32.1% 的当前最佳 mAP,优于现有的基于 SNN 的方法。我们的研究不仅强调了 SNN 在事件摄像机物体检测中的潜力,而且推动了 SNN 的发展。代码可在 https://github.com/yimeng-fan/SFOD 获得。
About This Guide 4 Design 5 Terms Used in this Guide 6 Future Changes to the Guide 6 Summary of Arizona VFC Program Requirements 6 Vaccines for Children (VFC) Program Overview 21 Bureau of Immunization Services (BIZS) Directory 22 VFC Overview 23 VFC Program At-a-Glance 23 VFC Program History 25 VFC Program Funding 25 VFC Program Oversight 25 ACIP and VFC Resolutions 25 Vaccine Administration Fees and Fee Caps 26 Children's Health Insurance Program (CHIP) 26 CHIP and VFC Eligibility 26 Module 1 – Vaccine Accountability and Management Plan 27 Overview 28 Vaccine Accountability and Management Plan Components 28 VFC Vaccine Accountability and Management Plan (VAMP) 29 Vaccines for Children Program (VFC) Requirements (Overview) 31 Module 2 – VFC Program Participation Requirements 35 Overview 36 Provider Enrollment Criteria Requirements 36 Vaccine Coordinators 37 Provider Re-Enrollment 38 Provider Billing Procedures 39 Provider Request for a Change in VFC Status 39 Provider Inactivation 39 New Signing Physician 39 Provider Relocation 40 Provider Closure 40 Other Changes To Report 40 BIZS VFC Forms 40 Module 3 – VFC Eligibility and Requirements 41 Overview 42 VFC Eligibility Criteria for Patients 42
(4)其他 A. 参赛资格年份为令和204年、令和205年、令和206年。 有关招标及承包的详细信息,请参阅“招标及承包指南”。 通过邮寄方式投标的,必须提前通知投标人,并于投标开始前一天下午5:00点前(若前一天是节假日或休息日,则需提前一天)到达。 其余事项详见附件1“关于邮寄投标等”。 代理投标的投标人必须在投标时提交委托书。 参加投标者须在投标前提交《资格审查结果通知书》。 (传真均可)其他内容请参见附件2。 如有不清楚之处等请咨询以下联系方式 (A)投标相关事宜 本田中央会计团承包第二科(TEL:03-3268-3111 分机 47556)(传真:03-5269-5135(直通)) (B)规范内容相关事宜 村冈人事教育部地勤职员室(TEL:03-3268-3111 分机 40692)
以生物风格的活动相机跟踪近年来引起了人们的兴趣。现有的作品要么利用对齐的RGB和事件数据进行准确跟踪,要么直接学习基于事件的跟踪器。前者会产生较高的推理成本,而后者可能容易受到嘈杂事件或稀疏空间分辨率的影响。在本文中,我们提出了一个新型的分层知识蒸馏框架,该框架可以在培训期间完全利用多模式 /多视图信息,以促进知识转移,使我们能够仅使用事件信号来实现测试过程中高速和低潜伏期视觉跟踪。特别是,基于教师变压器的多模态跟踪框架首先是通过同时喂食RGB框架和事件流来训练的。然后,我们设计了一种新的分层知识蒸馏策略,其中包括成对相似性,功能表示和基于响应地图的知识蒸馏,以指导学生变形金刚网络的学习。在术语中,由于现有的基于事件的跟踪数据集都是低分辨率(346×260),因此我们提出了名为EventVot的第一个大规模高分辨率(1280×720)数据集。它包含1141个视频,并涵盖了许多类别,例如行人,车辆,无人机,乒乓球等。对低分辨率(Fe240Hz,Vi-Sevent,Coesot)和我们新提出的高分辨率EventVot数据集的进行了实验进行了实验
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码:
单光摄像机的惊人发展为科学和工业成像创造了前所未有的机会。但是,这些1位传感器通过这些1位传感器进行的高数据吞吐量为低功率应用创造了重要的瓶颈。在本文中,我们探讨了从单光摄像机的单个二进制框架生成颜色图像的可能性。显然,由于暴露程度的差异,我们发现这个问题对于标准色素化方法特别困难。我们论文的核心创新是在神经普通微分方程(神经ode)下构建的暴露合成模型,它使我们能够从单个观察中产生持续的暴露量。这种创新可确保在Col-Orizers进行的二进制图像中保持一致的曝光,从而显着增强了着色。我们演示了该方法在单图像和爆发着色中的应用,并显示出优于基准的生成性能。项目网站可以在https://vishal-s-p.github.io/projects/ 2023/generative_quanta_color.html
几何模型拟合是一个具有挑战性但又十分基础的计算机视觉问题。最近,量子优化已被证明可以增强单模型情况的稳健拟合,同时多模型拟合的问题仍未得到解决。为了应对这一挑战,本文表明后一种情况可以从量子硬件中显著受益,并提出了第一种多模型拟合 (MMF) 的量子方法。我们将 MMF 表述为一个问题,现代绝热量子计算机可以对其进行有效采样,而无需放宽目标函数。我们还提出了一种迭代和分解版本的方法,该方法支持真实世界大小的问题。实验评估在各种数据集上都显示出有希望的结果。源代码可在以下位置获得:https://github.com/FarinaMatteo/qmmf 。
项目、设计和施工工具列表旨在提高您对 NAVFAC PACIFIC 机会的认识。如果您对列出的任何项目感兴趣,请访问 www.SAM.gov。位置可能不反映项目的实际物理位置。在发布项目概要后确认项目位置。对于设计代理,IH =
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。