本文介绍了一种使用工具命令语言 (TCL) 脚本语言自动完成可变增益放大器 (VGA) 布局设计的方法。TCL 自动化涉及编写脚本来自动执行设计综合、仿真、验证和布局生成等任务。所提出的方法包括两个步骤:首先,生成描述所需布局的 TCL 脚本,然后执行 TCL 脚本以生成布局。TCL 脚本由布局生成器生成,该生成器将 VGA 的规格作为输入,并生成根据 TCL 命令描述布局的 TCL 脚本。然后由布局放置器执行 TCL 脚本,该布局放置器根据 TCL 脚本的指令将单元放置在布局中。所提出的方法已经在给定的 VGA 电路上实现并进行了评估。结果表明,所提出的方法可以高精度、高效地自动完成 VGA 的布局设计。© 2024 由索哈杰大学工程学院出版。DOI:10.21608/SEJ.2023.235841.1046
摘要:在现有文献中,行人动力学模型成功捕获了诸如车道形成,疏散,瓶颈,人群相交等各种复杂场景。然而,由于过程中缺乏人类智能,许多模型,尤其是基于力量的模型,都难以复制简单而真实的情景。在这项研究中,我们提出了一种新颖的可变目标方法(VGA),该方法将人类智能纳入行人dynamics模型中,从而大大提高了他们的效率和现实主义。VGA介绍了多个中间目标的概念,称为可变目标,这些目标指导行人到他们的最终目的地,同时最大程度地减少互动和破坏。这些可变目标充当指导系统,允许过渡和自适应导航。通过战略性地定位可变目标,VGA引入了一个随机性。这使模型可以在相同条件下模拟各种行人路径,以反映人类决策的多样性。除了在简单方案中的有效性外,VGA还展示了复制高密度方案(例如车道形成)的强劲性能,提供了与现实世界中数据匹配的结果。
A 3 5.7 英寸 AGP-3300HL/AGP-3300HS:QVGA(320 x 240 像素) AGP-3310HT:VGA(640 x 480 像素) B 00 QVGA(320 x 240 像素) 10 VGA(640 x 480 像素) C L 单色 LCD S STN 彩色 LCD T TFT 彩色 LCD D D24 使用 DC 型电源。 E 无 无紧急开关 红色紧急开关 :红色 黄色紧急开关 :黄色 GRY 紧急开关 :灰色 F 无 无按键开关 KEY 使用按键开关。
可配置的I/O选项x:1。串行端口(9-pin; d-sub)x 1 +外部VGA(15针; d-sub)x 1 2。串行端口(9-pin; d-sub)x 1 +显示端口x 1 3。串行端口(9-pin; d-sub)x 1 +外部VGA(15-pin; d-sub)x 1 + 2 nd lan(rj45)x 1 4。串行端口(9-pin; d-sub)x 1 +显示端口x 1 + 2 nd lan(rj45)x 1 5。串行端口(9-pin; d-sub)x 1 + 2 nd Thunderbolt™4型-C x 1 6。串行端口(9-pin; d-sub)x 1 + 2 ND Thunderbolt™4型C X 1 + 2 ND LAN(RJ45)x 1 7。串行端口(9-pin; d-sub)x 2 +外部VGA(15针; d-sub)x 1 8。串行端口(9-pin; d-sub)x 2 +显示端口x 1 9。串行端口(9-pin; d-sub)x 2 +外部VGA(15-pin; d-sub)x 1 + 2 nd lan(rj45)x 1 10。串行端口(9-pin; d-sub)x 2 +显示端口x 1 + 2 nd lan(rj45)x 1 11。串行端口(9-pin; d-sub)x 2 + 2 nd Thunderbolt™4 type-c x 1 12。串行端口(9-pin; d-sub)x 2 + 2 nd Thunderbolt™4型-C x 1 + 2 nd LAN(RJ45)x 1通信接口10/100/1000/100/100 base-t-t-telernetintel®Wi-fi 7 Be200,802.11be bluetooth(v5.4)xi oftional xi broblutional xi xi xi xi xi xi broboint x Internity:l1 l1 g5 x l1/l1 g5 x l1/l1/l1/l1/l1/l1 L1/L5 GPS XII可选:5G SUB-6,具有集成的L1/L5 GPS XII,XIII可选:双SIMS(MINI-SIM 2FF和E-SIM)IX,XIV
摘要:本文介绍了一种采用 65 nm 技术制造的 26 Gb/s CMOS 光接收器。它由三电感跨阻放大器 (TIA)、直流 (DC) 偏移消除电路、3 级 gm-TIA 可变增益放大器 (VGA) 以及内置均衡技术的无参考时钟和数据恢复 (CDR) 电路组成。TIA/VGA 前端测量结果显示 72 dBΩ 跨阻增益、20.4 GHz −3 dB 带宽和 12 dB DC 增益调谐范围。VGA 电阻网络的测量也证明了其有效克服电压和温度变化的能力。CDR 采用全速率拓扑,具有 12 dB 嵌入式均衡调谐范围。该芯片组的光学测量结果显示,在 2 15 −1 PRBS 输入下,26 Gb/s 速率下的 BER 为 10 −12,输入灵敏度为 −7.3 dBm。使用 10 dB @ 13 GHz 衰减器的测量结果也证明了增益调谐功能和内置均衡的有效性。整个系统功耗为 140 mW,采用 1/1.2 V 电源供电。
可配置的I/O选项x:1。串行端口(9-pin; d-sub)x 1 +外部VGA(15针; d-sub)x 1 2。串行端口(9-pin; d-sub)x 1 +显示端口x 1 3。串行端口(9-pin; d-sub)x 1 +外部VGA(15-pin; d-sub)x 1 + 2 nd lan(rj45)x 1 4。串行端口(9-pin; d-sub)x 1 +显示端口x 1 + 2 nd lan(rj45)x 1 5。串行端口(9-pin; d-sub)x 1 + 2 nd Thunderbolt™4型-C x 1 6。串行端口(9-pin; d-sub)x 1 + 2 ND Thunderbolt™4型C X 1 + 2 ND LAN(RJ45)x 1 7。串行端口(9-pin; d-sub)x 2 +外部VGA(15针; d-sub)x 1 8。串行端口(9-pin; d-sub)x 2 +显示端口x 1 9。串行端口(9-pin; d-sub)x 2 +外部VGA(15-pin; d-sub)x 1 + 2 nd lan(rj45)x 1 10。串行端口(9-pin; d-sub)x 2 +显示端口x 1 + 2 nd lan(rj45)x 1 11。串行端口(9-pin; d-sub)x 2 + 2 nd Thunderbolt™4 type-c x 1 12。串行端口(9-pin; d-sub)x 2 + 2 nd Thunderbolt™4型-C x 1 + 2 nd LAN(RJ45)x 1通信接口10/100/1000/100/100 base-t-t-telernetintel®Wi-fi 7 Be200,802.11be bluetooth(v5.4)xi oftional xi broblutional xi xi xi xi xi xi broboint x Internity:l1 l1 g5 x l1/l1 g5 x l1/l1/l1/l1/l1/l1 L1/L5 GPS XII可选:5G SUB-6,具有集成的L1/L5 GPS XII,XIII可选:双SIMS(MINI-SIM 2FF和E-SIM)IX,XIV
提供全面支持和更新(如有)。包含文章重印。1 x 5 1 4。可与 MDA、CGA、EGA、VGA 一起使用。和 Hercules 显示器
4x USB3.1(1x 快速充电)1x GBit LAN(RJ45)3x 音频(3.5 毫米插孔)1x 显示端口 1x VGA 2x COM(DB9)1x MIL DC-In(2 针)1x 对接连接器(POGO 针)
Thermal Sensor & Optics Array Format (NTSC) 640 × 512 Detector Type Long-life, uncooled VOx microbolometer Pixel Pitch 17 μm Thermal Frame Rate NTSC: 30 Hz or PAL: 25 Hz / 8.3 Hz Optical Characteristics Model FOV Focal Length F/# 669 69° × 56° 9 mm F1.4 644 44° × 36° 13毫米F1.0 625 25°×18°25毫米F1.1 617 17°×14°×35 mm F1.1 612 12°×10°×10°50 mm F1.2 610 10°×8.2°×8.2°60 mm F1.2 608 8.6°×6.6°×6.6°75 mm for1.17.5 rangertry for 1.5 complars for1um for1um for1.17.5 comprild consextral formral formral formral formral formral for1um formands Spectrral formral formral formral formran (NEDT)<30 MK @ 25°C(77°F)F#1.0可见光照明摄像机传感器类型4K 2160P(3840×2160)光学特性模型默认FOV FOV焦距F/#669 98°×55°×55°×55°3.6-10 mm 1.5°1.5 -2.5-2.8 644 63°×35555555555-1.8 62-16-1.8 63°×33°MM MM MMMMMM MMMMMM ×20°9-22毫米1.4-1.7 617 24°×14°13-55毫米1.6-2.2 612 17°×10°×13-55毫米1.6-2.2 610 14°×8°×8°×8°13-55 mm 1.6-2.2 608 11°×6°×6°13-2.2 luntivity and IDETITION and IDETITY 0.2 lixt and IDETITY 0.2 lindiv tivide and lintivity and Iteide 0.2 lunt lunt tide Iteide and Iteide 0.2 lund Iteide and Iteide 0.2 lund lunt lunt (@(f1.6 agc on,30 fps)b/w:0.10 lux(@(f1.6 agc on,30 fps)可见帧速率30 Hz hz 264/h.265或m-jpeg的独立渠道或M-jpeg(除外4K),可见和热流分辨率分辨率和热流分辨率:热流:热:vga(640×51)(640×51), 4K(3840×2160),1080p(1920×1080),720p(1280×720)&VGA(640×480)次级流:热:Thermal:VGA(640×512),QVGA(320×256),可见(320×256) (640×480)热图像设置
这项工作证明了一种新型横向阵风发生器的可行性,该发生器能够产生可控的时变阵风,而不会增加流动设施大面积内的湍流水平。新的阵风发生器概念基于涡流发生器阵列 ( VGA ),该阵列沿着设施测试段的某一给定流向位置的一面墙壁布置。使用这种装置,可以在风洞中演示阶梯式阵风和幅度为自由流速度 5.7% 的正弦阵风。对于 10 m ∕ s 的自由流速度,正弦阵风在自由流方向上产生几乎纯谐振动,角度为 3.25 度,频率为 2 Hz。简化的涡流阵列模型被证明是设计新型阵风发生器的可行工具。本研究重点展示 VGA 阵风发生器的概念,同时将发生器的设计优化和阵风强度和均匀性的极限探索留待未来工作。