亲爱的读者,欢迎阅读 NetLetter,这是一份航空通讯,面向加拿大航空、TCA、CP Air、加拿大航空和所有其他曾经在加拿大天空翱翔的加拿大航空公司。NetLetter 每月第二和第四个周末出版。如果您对加拿大航空历史和老式航空照片感兴趣,尤其是与加拿大航空、加拿大航空、加拿大国际航空及其成员航空公司相关的照片,那么我们相信您会喜欢这份通讯。请注意:我们会尽力识别和注明所有内容的原始来源。但是,如果您认出了您的材料而没有注明来源,请告知我们,以便我们纠正我们的疏忽。我们的网站位于 www.thenetletter.net 请点击下面的链接访问我们的 NetLetter 档案并了解有关 NetLetter 的更多信息。
特定于单个资产的物理属性可以表明确保弹性所必需的干预和资本计划水平。例如,使用气候模型软件评估时,可以将两个相邻的办公属性位于高风险洪水区,并获得相同的分数。但是,一个办公大楼可能是使用其关键的电气和HVAC设备设计的,位于地下室以下的地下室,而另一个办公楼可能在100年洪水区以上的阁楼中央工厂中具有关键设备,并结合了不依赖当地电网的备用电源。同样,即使一个具有老式的jalousie窗户,评估也可以为位于同一飓风易发的两座建筑物提供相同的分数,而另一个则具有窗口,可以承受多个100年的飓风活动。
© AFP Photo/Eric Feferberg/Getty Images;© Alain BUU/Gamma-Rapho/Getty Images;© Ancient Art & Architecture Collection Ltd/Alamy;© Ann Ronan Pictures/Print Collector/Getty Images;© 奥地利国家图书馆;© Brinkstock/Alamy;© Chris Howes/Wild Places Photography/Alamy;© Chronicle/Alamy;© Classic Image/Alamy;© Cynthia Johnson/The LIFE Images Collection/Getty Images;© European Pressphoto Agency b.v./Alamy;© Everett Collection Historical/Alamy;© Fine Art Images/Heritage Images/Getty Images;© Geoffrey Kidd/Alamy;© GL Archive/Alamy;© GraphicaArtis/Getty Images;© Heritage Image Partnership/Alamy;© Hulton Archive/Getty Images;© Image Source Plus/Alamy;© INTERFOTO/Alamy;© iStockphoto.com/123dartist; © iStockphoto.com/adempercem;© iStockphoto.com/agsandrew;© iStockphoto.com/ alengo;© iStockphoto.com/ayvengo;© iStockphoto.com/Erik Khalitov;© iStockphoto.com/ nzphotonz,© iStockphoto.com/Pali Rao;© iStockphoto.com/simarik;© iStockphoto.com/ Sirgunhik;© iStockphoto.com/Thomas Eye Design;© John Lund/Getty Images;© kubala/Alamy;© Lyroky/Alamy;© Maryam Mirzakhani/斯坦福大学提供;© Nick Higham/Alamy;© Nigel Tout/www.vintagecalculators.com;© Nils Jorgensen/REX;© Pictorial Press Ltd/Alamy;© Rex,© SSPL/Getty Images;© World History Archive/Alamy; © www.sliderulemuseum.com/Rose Vintage Instruments Ohio。
摘要:随着全球视障人士和盲人人口的稳步增长,开发低成本辅助设备的需求也随之增加。盲杖减少了人力,让人们更好地了解周围环境。此外,它还为视障人士提供了一个机会,让他们无需他人帮助即可从一个地方移动到另一个地方。该设备还可用于养老院,老年人由于视力下降,日常活动困难重重。本文旨在帮助人们“看到”周围的环境。由于人工智能领域现在取得了长足的进步,物体检测等功能变得越来越简单且计算上可行,因此本文实现了这些功能。本文专门研究了安装在棍棒上的设备所捕获的图像上的物体检测和类型,然后可以通过声音或语音的方式将统计数据传递给人。
Mossman 变电站由两条古老的 66kV 木杆线供电,这些线路来自 Powerlink 的 Turkinje 132/66kV 变电站,通过 Mossman 1 (MOSS 1) 和 Mossman 2 (MOSS 2) 馈线(分别建于 1975 年和 1958 年)。Mossman 变电站由两条 66 kV 架空馈线组成,为两个室外 66 kV 母线段、四个断路器 (CB) 舱和隔离器供电。两台 1963 年的 10MVA 66/22kV 变压器为室外 22kV 场站供电,包括两个 22 kV 母线段、七个 22 kV 断路器和十三个隔离器。二次系统、通信和保护设备安装在变电站控制大楼内。四条 Mossman 22kV 馈线与相邻的 132/22kV Craiglie 变电站 22kV 配电网络共享馈线内联络线和馈线间联络线,该配电网络为大约 4280 名客户供电。
讨论,局限性和未来研究的途径该模型的准确性取决于输入数据,尤其是SWHC估计和草覆盖效果。SWHC主要取决于固有的土壤特征,例如纹理和粗元素的百分比,这超出了种植者的控制。然而,这也取决于葡萄树生根深度,生产者可以通过适当的植入土壤制备或使用剧烈的砧木来修改。草皮的百分比是所研究的草皮最简单的适应性参数。种植者可以每年甚至在一个季节内调整它,具体取决于复古的气候条件,从而对高度调节的葡萄道水缺乏作用。这种建模练习没有考虑到这种管理实践,也没有选择草覆盖物种及其干燥,所有这些都会显着影响土壤蒸发并覆盖作物蒸散量,从而弥补葡萄藤缺水的水平。
摘要:本文介绍了世界商业周期的同步和领先综合月度指标——全球经济晴雨表。两者均以世界产出增长率周期为目标。这些指标的计算包括两个主要阶段。第一阶段包括变量选择程序,其中使用预设的相关阈值和参考序列的目标结果作为选择标准。在第二阶段,将选定的变量组合并转换为相应的综合指标,以参考序列作为响应变量,计算为第一个偏最小二乘因子。在本文提到的最后一个年份(2018 年 12 月),在第一阶段测试的 1681 个变量的 6605 个转换中,1275 个被选入同步指标,1228 个被选入领先综合指标。我们在伪实时设置中分析了这两个新指标的特征,并证明这两个指标都是迄今为止发布的全球商业周期少数指标的有用补充。
摘要:本文介绍了世界商业周期的同步和领先综合月度指标——全球经济晴雨表。两者均以世界产出增长率周期为目标。这些指标的计算包括两个主要阶段。第一阶段包括变量选择程序,其中使用预设的相关阈值和参考序列的目标结果作为选择标准。在第二阶段,将选定的变量组合并转换为相应的综合指标,以参考序列作为响应变量,计算为第一个偏最小二乘因子。在本文提到的最后一个年份(2018 年 12 月),在第一阶段测试的 1681 个变量的 6605 个转换中,1275 个被选入同步指标,1228 个被选入领先综合指标。我们在伪实时设置中分析了这两个新指标的特征,并证明这两个指标都是迄今为止发布的全球商业周期少数指标的有用补充。
首先,本综述探讨了先前关于混合氢气对混合气体流体和热力学性质、输配电网络内管道材料和设备性能以及地下储存和最终用途氢气分离等支持设施的影响的研究。众所周知,氢气的存在会增加常用管道钢中疲劳裂纹的扩展速度,研究表明,抗拉强度较高的金属在与氢气接触时,抗断裂性能的下降幅度往往大于抗拉强度较低的金属。最近的研究表明,即使在氢分压较低的情况下,疲劳裂纹扩展和抗断裂性能也会降低,随着氢分压的增加,随后的降低幅度会更小。在高应力情况下,疲劳裂纹扩展与氢浓度基本无关。ASME B31.12 等设计指南提供了如何根据管道直径和厚度评估许多常见管道材料的合适工作压力的指导。需要对美国天然气管道系统中使用的老式钢材进行额外的疲劳和断裂测试,以确定其在氢气环境中的极限行为,尤其是老式的焊缝和硬点,并且必须检查任何考虑混合的现有管道是否存在缺陷。虽然塑料管道通常被认为适合在配电网络压力下容纳氢气,但研究表明,氢气会影响聚乙烯材料的物理特性,例如密度和结晶度。需要进行更多研究来量化这些变化对聚合物管道和管道接头的机械性能和寿命的影响,以及氢气对特定树脂配方的影响。氢气对材料的影响还延伸到压缩机、阀门、储存设施和其他非管道组件。评估地下储存设施中的氢气还必须考虑与可能消耗氢气的微生物相关的潜在反应,以及枯竭的油气储层(最常见的天然气储存类型)中存在的残留碳氢化合物对最终用途应用的危害程度(基于所需的氢气纯度)。氢分离是一项成熟的技术,但对于天然气中低氢浓度混合物来说,成本可能过高。
Unlocking hidden potential in shallow water Gulf of Mexico legacy data for carbon capture and storage exploration Rachel Collings*, Igor Marino, Adriana Arroyo Acosta, Jack Kinkead, Hugo Medel, Trong Tang, Gabriela Suarez and Brett Sellers, PGS Summary The development of carbon capture and storage (CCS) relies heavily on high-resolution seismic images to characterize both the存储地点及其覆盖层的地质框架。在这项研究中,我们表明,通过应用最新的成像技术,我们可以在墨西哥湾的浅水区域内产生适合表征和驱散地点的结果。对场数据的分析揭示了几何问题,幅度变化以及各种噪声的强污染。为了准备成像的数据,我们部署了全面的小波处理工作流程。为了获得高分辨率速度模型,实现了地震反转工作流。为了达到所需的分辨率,运行了最小二乘的kirchhoff迁移。然而,由于水深度从3-15 m不等,主要反射的近后地震覆盖范围不足以估计浅反射率。相反,使用了具有倍数的成像。传统的Kirchhoff体积具有有限的带宽,并且不会成像任何浅反射率。与倍数的成像揭示了通道网络以及到达水底的浅断层,这对于表征存储复合物的地质框架至关重要,并正确评估了风险。此高分辨率地震数据将允许对该区域的故障框架进行详细映射。在墨西哥湾(GOM)的浅水中引入碳捕获和储存(CCS)正在增加牵引力,作为达到零排放净排放的可行选择。对其发展至关重要的是高分辨率地震图像,以表征目标存储复合物周围的地质框架。表征碳存储位点的容量和遏制是较大CCS价值链的风险分析的一部分。浅水和环境法规导致收购新数据的艰巨成本和复杂性。但是,有大量的老式海洋底电缆(OBC)数据可供重新处理。在这项研究中,我们表明,将最新的技术解决方案和工作流应用于这些老式数据集可以解锁其他价值和信息产生的结果,适合表征碳存储站点的容量和遏制。