欧盟最近禁止使用氯苯胺灵 (CIPC)(委员会实施条例 (EU) 2019/989),这促使马铃薯加工行业寻找替代且更安全的抗发芽方法。低温(即 4°C)储存已成为在不使用 CIPC 的情况下长期储存马铃薯的有效选择。然而,大多数商业马铃薯品种在冷藏过程中会积累高水平的还原糖 (RS),这种现象称为冷诱导甜化 (CIS)。在将马铃薯高温加工成薯片和炸薯条等产品的过程中,RS 会与天冬酰胺和肽发生反应生成神经毒素丙烯酰胺,加工产品会呈现棕色至黑色(Bhaskar 等人,2010 年)。图 1a 以图形方式描述了马铃薯储存的挑战。由于培育抗 CIS 的马铃薯品种来取代易感 CIS 的品种十分困难,新基因组技术 (NGT) 正成为一种有用的方法,可快速将抗 CIS 特性引入加工行业使用的商业品种中。尽管基于 CRISPR 的方法可以灵活地针对植物基因组中的任何选定序列,但迄今为止,该技术主要用于针对植物中的蛋白质编码序列。在本研究中,我们利用编辑 5' UTR 序列来改造业界首选的马铃薯品种的 CIS 抗性。液泡转化酶 (VInv) 已被确定为将蔗糖转化为 RS 的关键酶。先前的研究表明,沉默 VInv 基因是降低马铃薯冷藏后 RS 积累的一种合适方法 (Bhaskar 等人,2010 年;Zhu 等人,2016 年)。
沉默机制。BG25马铃薯中修饰的第二种预期效应是降低糖的水平并减少酶促变暗(称为“黑点”)。Simplot引入了含有液泡转化酶基因(VINV)和多酚氧化酶基因(PPO)的倒重复段的DNA序列,它们产生DSRNA以降低VINV和PPO的RNA转录水平。VINV基因编码VINV蛋白,该蛋白参与将蔗糖转化为其成分减少糖,而PPO基因编码PPO蛋白,该PPO蛋白氧化酚类化合物可产生深色色素。第三,Simplot引入了来自卵巢结核的改性乙酰乳酸合酶基因(Stmals),该基因编码了stmals蛋白,该蛋白具有对乙酰乳酸合酶(ALS)的耐受性,可抑制除草剂,并用作可选的标记。
摘要J.R. Simplot Company(Simpleot)已就BG25马铃薯衍生的食品进行了咨询(FDA)的咨询。BG25马铃薯经过基因设计,以表达对植物疫霉菌(RPI)蛋白质蛋白AMR3,BLB2和VNT1的抗性,以抗击马铃薯晚期疫病疾病,以及对乙酰蛋白质的抗性,这使乙酰蛋白耐受性耐乙酸盐合成酶(Als) - 抑制了 - 抑制的雄性固醇。stmals用作可选标记。BG25马铃薯还经过基因设计,以抑制马铃薯病毒Y外套蛋白(PVY-CP)的表达,并使用RNA干扰(RNAI)诱导PVY抗性。最后,BG25马铃薯被设计为抑制液泡转化酶(VINV)和多酚氧化酶(PPO)的表达,以分别使用RNAi,分别称为“黑点”,从而降低了还原糖的较低水平,并降低了酶褐变。本文档总结了FDA食品安全与应用营养中心(CFSAN,WE)评估与BG25马铃薯的人类食品用途有关的结论和支持数据和信息。FDA的兽医中心总结了其与动物食品用途有关的评估。