时间分辨率会对 LEO 卫星星座可运行的高度窗口造成一些限制。600-800 公里范围内可实现的低 MRT 通常使这些高度窗口适合大多数 EO 任务。对于某些范围,高度的微小变化会导致时间分辨率性能发生显著变化。然而,有趣的是,由奇数个平面组成的 SSO 星座,每个平面由一颗卫星占据,可以为某些较低高度窗口提供显著的改进,在时间分辨率方面提供与较高高度相当的性能。在图 6 和图 7 中,Walker Delta 配置 1 的 3/3/0 在 200 至 350 公里的高度范围内的低 MRT 证明了这一点。
简介近年来,人们对外层空间领域的兴趣日益浓厚。这得益于技术进步和创新,以及民用、国防和商业等领域日益增多的太空应用。最重要的发展是对遥感数据和低地球轨道 (LEO) 通信的需求不断增长。这引起了更大的参与,导致这一空间带过于拥挤。在这一不断发展的格局中,极低地球轨道 (VLEO) 正在成为一种值得关注的替代轨道带。该空间带首次由美国的 Corona 侦察卫星在 1960 年代和 1970 年代初期使用,它们在 150 公里的高度运行,有趣的是,它们将相机胶片抛回地球,然后被飞机在半空中捕获,供情报分析员处理。
最近,人们重新燃起了对极低地球轨道 (VLEO) 的兴趣,以实现卫星的持续运行,并将其作为停泊轨道,然后再将卫星提升到其运行高度,例如 Starlink。随着低地球轨道 (LEO) 的拥挤程度不断增加及其相关的碰撞风险,VLEO 可以提供一个额外的轨道区域,卫星可以在该轨道区域内享受 LEO 区域的好处,从而减轻 LEO 区域的负担。利用 VLEO 进行卫星运行有多个优势。首先,是明显的环境优势——在如此低的高度,大气阻力的增加意味着更容易、更快地实现报废脱轨。例如,在 300 公里处,无论卫星的寿命如何,卫星的寿命都将不到一年
摘要 极低地球轨道 (VLEO) 已被提议作为一种有益的太空任务模式,因为它们倾向于提高仪器的空间分辨率并降低单位质量的发射成本。然而,对于目视仪器来说,这些好处是以仪器扫描宽度减小为代价的。这种减少导致地球上某些区域的重访时间更长,实现全球覆盖的时间也更长。相反,光检测和测距 (激光雷达) 作为一种主动遥感技术,由于信噪比的提高,可以从较低海拔的较大扫描宽度中受益。对这种关系的研究表明,激光雷达扫描宽度与海拔的平方成反比,因此,提供所需激光雷达覆盖所需的航天器数量也与海拔的平方成反比。对合适推进系统的研究表明,尽管推进剂质量和维持轨道所需的推进器数量随着海拔的降低而增加,但由于所需航天器数量较少,整个系统的质量以及发射成本通常会随着海拔的降低而降低。对于给定的任务、航天器平台和推进系统,可以确定一个 VLEO 高度,从而实现最低的总任务成本。
在非常低的地球轨道(VLEO)中摘要,高度低于450 km,卫星的空气动力学特性主要取决于流动状态,游离分子流以及原子氧与飞船表面的相互作用。稀有的轨道空气动力学研究(Roar)设施是一种新型的实验设施,旨在模拟这些条件在受控环境中,以表征材料的空气动力学特性。它是Discoverer的一部分,这是一个Horizon 2020项目,开发了使卫星在VLEO中可持续运行所需的不同技术。由于咆哮并不打算进行侵蚀研究,因此在这项工作中讨论了其他原子氧气暴露实验及其特征。咆哮由一个超高真空系统组成,负责产生自由分子流量条件,轨道速度处的高温氧原子和质谱仪的来源;后者用于表征气体表面相互作用,因此是材料的空气动力学性能。本文包括对咆哮的主要成分的描述,以及用于材料测试和早期结果的实验方法。在要考虑的主要参数之间是原子氧通量,束形和能量扩散,质量分辨率和信号噪声比。关键字:原子氧,非常低的地球轨道,气体表面相互作用,游离分子流,真空,质谱。首字母缩写/缩写vleo vleo非常低的地球轨道原子氧咆哮稀有轨道空气动力学研究设施INMS离子与中性质谱仪1。简介
本报告提出了开发不同技术的路线图,这些技术对于未来 VLEO 航天器的商业可行性和持续运行必不可少、相关且可能提供支持。报告简要介绍了每个考虑技术领域的最新进展,并考虑了其开发面临的主要技术挑战。报告还概述了与每种技术开发相关的里程碑。报告还在适当的情况下指出了这些技术在已知任务机会(“任务拉动”)中的应用。该路线图主要针对航天机构、政策制定者和行业利益相关者,并介绍了需要优先考虑和投资的关键技术发展,以实现未来 VLEO 的利用和开发。
卫星在非常低的地球轨道(VLEO)中的操作与航天器平台和任务设计的各种好处有关。至关重要的是,对于地球观察(EO)任务,降低高度可以使较小且功能较小的有效载荷能够实现与较高高度处的较大仪器或传感器相同的性能,并具有对航天器设计的显着好处。因此,对这些轨道的开发的重新兴趣刺激了新技术的发展,这些技术有可能在此较低的高度范围内实现可持续运营。在本文中,为(i)新型材料开发了系统模型,这些材料可以改善空气动力学性能,从而减少阻力或增加对原子氧侵蚀的抵抗力以及(ii)大气 - 呼吸电力推进(ABEP),以持续的阻力补偿或VLEO减轻。还讨论了可以利用VLEO中空气动力和扭矩的态度和轨道控制方法。这些系统模型已集成到概念级卫星设计的框架中,该方法用于探索这些新技术启用的未来EO航天器的系统级交易。对光学高分辨率航天器提出的案例研究表明,使用这些技术降低轨道高度的显着潜力,并表明与现场与现行现状的任务相比,与现行成本相比,可以节省多达75%的系统质量和超过50%的开发和制造成本。对于合成的孔径雷达(SAR)卫星,质量和成本的降低显示为较小,尽管目前据指出,目前可用的成本模型并未捕获该细分市场的最新商业进步。这些结果是维持VLEO运营所需的其他推进和权力要求,并指出未来的EO任务可以通过在此高度范围内运行而受益匪浅。此外,已经表明,只有已经开发的技术的适度进步才能开始剥削该较低的高度范围。除了减少资本支出和更快的投资回报率,降低成本和增加获得高质量观察数据的上游收益外,还可以传递给下游EO行业,以及各种商业,社会和环境应用领域的影响。
1。TA-1:开发,合格和操作一颗携带科学和任务工具的小型卫星。本RFI中描述的科学有效载荷将产生测量,以支持准确的,近实时电离层模型的开发。HF任务子系统将收到地面HF信号;在HF频段下端运行的有效天线很长,在VLEO环境中提出了太空车辆阻力挑战。该卫星现已建造,预计将于2025年6月推出。2。TA-2:在VLEO中开发同化模型以从TA-1卫星中摄入原位测量。派生的电子密度模型将被馈送到HF传播代码中,并用轨道数据验证。目标是显着提高比当前最新同化模型的忠诚度。
“NTU 在人工智能、数据科学和各个工程领域的深厚专业知识使我们的教师能够攻克地球的最后边界——太空。自 OSTin 成立以来的这些年里,我们在太空领域积累了广泛的技术专业知识,从上游研究到下游运营,”何教授表示。“ELITE 是 NTU 的最新卫星,融合了新加坡公司的最优秀创新技术。它展示了先进的卫星技术如何以更可持续和更具成本效益的方式造福人类。展望未来,我们的目标是帮助共同开发本地太空社区的“数据湖”,促进合作并共享宝贵信息,这将有助于新加坡太空产业发挥其最大潜力。” OSTIn 执行董事 Jonathan Hung 先生表示:“通过支持 NTU 领导的 ELITE 项目,OSTIn 能够促进新加坡太空生态系统中各个太空参与者之间的合作。ELITE 展示了我们的生态系统在提升新加坡太空技术能力方面所取得的进步。该项目还为我们的学生和年轻人提供了参与机会,进一步激发了他们对科学、技术、工程和数学 (STEM) 作为职业选择的热情。” ELITE 项目还吸引了 20 多名 NTU 学生的参与,他们是越来越多积极参与与空间技术相关的 STEM 工作的新加坡年轻人之一。这些来自中学、初级学院、理工学院和大学的学生有机会以多学科的方式进行实验和创新,培养他们对科学和工程的热情。 ELITE 卫星是新加坡南洋理工大学、Aliena、LightHaus Photonics、新加坡国立大学淡马锡实验室和 ST 工程卫星系统系统合作的成果,通过创新研究和战略伙伴关系展示新加坡在空间技术方面的优势。 来自新加坡的新型卫星创新 ELITE 卫星重 180 公斤,尺寸为 129 厘米 x 70 厘米 x 73 厘米,相当于一个小冰箱的大小。它的设计运行高度为 VLEO,距离地球表面约 250 公里,远低于大多数小型卫星的常规高度 550 公里或更高。VLEO 是一个相对未开发的太空区域,在 VLEO 中运行会带来重大挑战,例如地球大气层的痕迹造成的空气阻力。这种阻力会降低卫星的轨道高度,最终导致其在大气层中燃烧殆尽。这种现象还有助于防止报废卫星成为太空垃圾。