根据其章程,AGARD 的使命是将北约国家在航空航天科学技术领域的领军人物聚集在一起,以实现以下目的: - 为成员国推荐有效的方式,以便利用其研究和开发能力造福北约社区; - 向军事委员会提供航空航天研究和开发领域的科学和技术咨询和援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学和技术信息; - 向成员国提供援助,以提高其科学和技术潜力; .a.- 根据要求,向其他北约机构和成员国提供与航空航天领域研究和开发问题有关的科学和技术援助。
摘要:最近,磁电(ME)天线已成为非常低频(VLF)频段的天线微型化的热门话题,因为它们的大小可以降低到传统电气天线的千分之一。但是,它们仍然患有狭窄的传输/接收带宽和弱辐射强度。为了解决这些问题,设计了带有Microbridge结构的VLF薄片ME天线,并使用了数组连接的方法。测试结果表明,在23 kHz时,ME天线单位的检测极限为636 pt/√Hz,0.12 m时的辐射磁场强度为0.87 nt(输入功率为10 mW)。通过将三个ME天线单元串联具有相同的共振频率,与单个单元相比,输出响应已增加到1.72倍,EM波辐射强度增加到1.9倍。与单个单元相比,通过平行连接两个具有不同谐振频率的ME天线单元,输出响应带宽已扩展到1.56倍,并且信号辐射带宽已扩展到1.47倍。这项工作为我天线的未来大规模阵列提供了宝贵的参考。
这个特殊的气氛旨在收集高质量的原始研究文章,并回顾了“了解空间物理学和VLF/ELF信号的大气电力”的主题,重点是VLF的重要性(非常低的频率,3-30kHz)/ELF(极低的频率)(极低的频率,1Hz-3kHz)的范围,是一项范围的波动范围。物理,大气电和地震 - 电磁学。我们想邀请从事VLF/Elf Waves工作的非常活跃的科学家提交论文(原始或评论),以向读者展示不同科学领域的观点。上述整个研究领域是多方面的,涉及几种类型的测量(基于地面和卫星)和分析方法。出于上述原因,我们希望您就上述主题提交最近的文章,实验和理论研究论文以及案例和统计研究。
TRIM-S 的四个维度(精力、好心情、动力和放松)显示出特定于条件的反应模式,与回答格式大不相同。此外,对整体舒适度的评级也显示出特定于条件的反应,与回答格式大不相同。触摸健康时 HR 较高,无聊时 HR 较低。HRV 高频相对功率 (HF%) 与无聊和放松特别相关。HRV 极低频相对功率 (VLF%) 与条件成反比,与 HRV 低频相对功率 (LF%) 相比,与情绪激活具有一定的敏感性,在 VLF% 中观察到TRIM-S 的激活相关维度、精力和放松与心血管活动有关,但动力和情绪在主观反应水平上更敏感地通过评级进行评估,与回答格式大不相同。
高功率传输设备 (HPTE) FSBS HPTE 维护和现代化潜艇广播发射系统的设备,包括十个 FSBS 广播发射站 (BTS) 站点的高功率发射器和天线。这些 BTS 为所有级别的潜艇提供 24/7 单向 VLF/LF 战略和战术信息传输。(AAP)
本研究描述了现场实验,在配备无线电等离子体波接收器的空间物理卫星与其他空间物体结合时测量甚低频 (VLF) 等离子体波 (1-30 kHz),以了解次级空间物体在另一颗卫星附近的快速通过是否可以被检测到。地球电离层中的物体在其轨道运动后会形成一个离子密度稀疏区域,这可以作为物体探测的基础。2022 年,现场实验尝试在太空无线电等离子体传感器快速穿越次级空间物体尾流期间将这些离子密度稀疏检测为宽带 VLF 等离子体波噪声。这是为了回答空间物体是否可以通过其轨道运动在地球电离层中引起的等离子体离子密度扰动来探测。加拿大空间物理卫星 CASSIOPE 启动了其无线电等离子体物理包,并在 CASSIOPE 与次级物体之间预测已知的近距离接近之前、期间和之后的时间记录了电场数据。 CASSIOPE 旨在测量地球的极光、粒子和场,其偏心轨道为 330 x 1200 公里,可偶然采集地球电离层中的各种等离子体状态。此外,对于太空领域意识社区来说,该轨道定期穿过人口密集的轨道壳层,例如 Starlink、Iridium、OneWeb 和其他太空物体,从而定期提供合相机会来尝试测量等离子体振荡。在合相之前,CASSIOPE 从其交叉偶极子无线电接收仪 (RRI) 收集了电场测量值,该仪器可检测到跨度约为 1-35 kHz 的等离子体电场振荡。2022 年初,共描述了 35 次合相。当物体穿过或靠近次级物体的预测尾流时,四次合相表现出 VLF 宽带噪声能量,范围从离子回旋频率 (~36 Hz) 到下混合谐振频率 (~5-6 kHz)。然而,我们发现与次级物体最接近时间的相关性从弱到强。其他会合中,次级物体从 CASSIOPE 后面经过,而 RRI 未穿过次级物体的尾迹,其波能并未超过环境背景辐射 - 这与空间物体离子声马赫锥外的等离子体将表现出未受干扰的等离子体行为的预测一致。虽然空间物体尾迹中的密度稀疏似乎与 VLF 范围内的会合有微弱的关联,但这些发现表明,应从等离子体波的角度来检查检测到的波能与次级物体运动之间的空间和时间分离,其中波能相对于空间物体尾迹几何约束之外的地磁场线传播。
. 使用磁法和甚低频地面法以及无人机、感应极化 (IP)、自然电位 (SP)、电阻率成像 (ERT) 和电磁法 (vTEM) 进行矿物勘探地球物理调查。地球物理和地质调查和技术在地下水勘探、岩土现场研究、考古勘探、环境研究和地热能中的应用。
表 2 水文测量中使用的电子定位系统的带宽分类 带宽 符号 频率 系统 甚低频 VLF 10-30 KHz Omega 低频 LF 30-300 KHz LORAN-C 中频 MF 300-3000 KHz Raydist、Decca 高频 HF 3-30 MHz 基本地球频率 10.23 MHz 甚高频 VHF 30-300 MHz VOR 飞机导航 超高频 UHF 300-3000 MHz Del Norte L 波段 NAVSTAR GPS 超高频 SHF 3-30 GHz(微波 EPS)C 波段 Motorola S 波段 Cubic X 波段 Del Norte 可见光 EDM* 激光 EDM 红外光 EDM、Polarfix * 电子测距仪器。表 3 水文测量中使用的电子定位系统的现场应用 频率范围 系统类型 可操作距离 现场应用 低频和中频范围 双曲相位/脉冲差分
具有船舶电子设备操作和维护经验。期望:具有印度海军舰艇上船舶通信和导航设备、最先进仪器和武器控制装置的调试、操作和维护以及值班经验。熟练掌握基于计算机的数据管理和记录保存。具有船舶通信系统故障排除和维护/维修经验,例如 EPABX、声控电话、主广播和公共广播系统(具有多个麦克风和扬声器站)、低功率/高功率无线/射频通信系统(VLF、LF、MF、HF、VHF/UHF 和微波频率范围)、船舶导航系统、火灾探测系统及其布线和互连。熟悉 LAN 并在主管领导下具有海军舰艇上 RF/无线和其他通信系统/导航系统的经验。具有航空母舰/主力舰上的经验将是额外的优势。MCEAR/CHEAR/EAR3/CHMECH(R)/MECH(R) 3 / AA3/ AM3/EAA3/ MECH(AR)3/ CHAA/CHAM/ CHEAAR/ CHMECH(AR)/ MCAA/MCAM/ MCEAAR/ MC(MECH)AR 等级是理想的。
战斗机就是这样一个例子,为了完成战斗任务,飞行员在体力(由于 G 机动)和认知(处理多个传感器、感知、处理和多任务,包括通信和操作武器)方面都承受着巨大的负担。需要分析这种认知需求,以了解战斗机飞行员的工作负荷。本研究的目的是分析在不同飞行负荷条件下,在逼真的高保真飞行模拟器环境中战斗机飞行员的动态工作负荷。各种工作负荷条件包括 (a) 正常能见度、(b) 低能见度、(c) 正常能见度和次要任务,以及 (d) 低能见度和次要任务。虽然飞行员的飞行表现得分不错,但生理指标如心率变异性 (HRV) 特征和主观评估 (NASA-TLX) 成分在任务之间具有统计学意义 (p<0.05)。在所有任务负载条件下,HRV 特征(例如 SD2、SDNN、VLF 和总功率)都很重要。LFnu 和 HFnu 特征能够区分低能见度和次要认知任务的影响,在本研究中,次要认知任务被强加为增加的任务。该结果有助于了解飞行员在每个飞行阶段的任务和表现以及他们在动态工作量期间的认知需求,这可以在模拟器和实际飞行条件下以最佳方式协助飞行员的训练计划。