我们为机器人提供了一个框架,可以通过与人类用户的原位语言互动来学习新颖的视觉识别和任务。先前的方法使用了大型预训练的视觉模型来推断新的对象零射击,或者添加了新颖的概念及其属性和表示形式。我们通过使他们能够学习新颖的概念并与他们解决看不见的机器人技术任务来扩展着专注于学习视觉概念层次结构的方法。为了使视觉概念学习者能够单次解决机器人技术任务,我们开发了两种不同的技术。首先,我们提出了一种新颖的方法,即Hi-viscont(任务的等级视觉概念学习者),该方法将新颖概念的信息扩大到概念等级的父母节点。此信息传播允许层次结构中的所有概念都可以更新,因为在继续学习的环境中教授新颖的概念。其次,我们将视觉任务表示为带有语言注释的场景图,使我们能够对显示的任务零射击的新颖置换。我们提出两组结果。首先,我们将Hi-Viscont与三个域中的视觉问题答案(VQA)上的基线模型(Falcon)进行了比较。虽然在叶片水平概念上是基线模型,但Hi-Viscont平均而言,在非叶概念上取得了9%以上的改善。其次,我们进行了一个人类受试者实验,用户在该实验中教我们的机器人视觉任务。我们将模型的性能与基线猎鹰模型相结合。与基线模型相比,我们的框架可实现33%的成功率指标,对象水平准确度提高了19%。通过这两个结果,我们证明了我们的模型在机器人持续学习环境中学习任务和概念的能力。
近年来,机器学习、量子多体物理学和量子信息科学等领域的交流卓有成效。这种多学科的互动在一定程度上得益于以下发现:人工神经网络为参数化量子多体希尔伯特空间的子集提供了强大的归纳偏差。尽管通过神经网络描述希尔伯特空间向量会导致无法对此类量子态子集进行精确的线性代数运算,但由于存在一种名为变分蒙特卡洛 (VMC) 的有效随机近似算法 [8,30],基于神经网络的量子态 (NQS) 能够准确揭示量子自旋系统基态的属性,并使用 VMC 的时间相关变体(即所谓的 t-VMC)模拟其时间演化 [6,7]。自从复值受限玻尔兹曼机 [ 8 ] 问世以来,神经网络量子态的范围已经扩大到涵盖各种量子系统,这通过使用日益复杂(通常是多层的)的架构成为可能。相互作用的另一个驱动因素是发现 VMC 和变分量子算法 (VQA) 之间有着密切的类似性。特别是 Stokes 等人 [ 40 ] 在量子信息几何方面的最新研究阐明了机器学习中的自然梯度下降 [ 2 ]、随机重构 VMC [ 38 ] 和量子计算中的变分虚时间演化 [ 45 ] 之间的联系。本教程论文旨在作为对连续变量量子系统的基于流的 VMC 和 t-VMC 的独立回顾。为了具体起见,我们以玻色子量子系统为例进行讨论,以场振幅基表示。场振幅基并不是 VMC 文献 3 的传统焦点,VMC 文献集中于更易于用 Fock 基解释的非相对论系统。然而,场振幅基在具有相对论对称性的系统中是自然的,其中受控玻色子哈密顿量在 L 2 空间中表示为简单的薛定谔算子。因此,哈密顿量的简单性也提供了教学优势。场振幅基的一个可能的计算优势是,它不需要人为地将允许的模式占用数限制在有限范围内以进行数值实现。为了促进
[1] Gagan Bansal、Tongshuang Wu、Joyce Zhou、Raymond Fok、Besmira Nushi、Ece Kamar、Marco Tulio Ribeiro 和 Daniel Weld。2021 年。整体是否超过部分?人工智能解释对互补团队绩效的影响。在 2021 年 CHI 计算机系统人为因素会议论文集。1-16。[2] Zana Buçinca、Maja Barbara Malaya 和 Krzysztof Z Gajos。2021 年。信任还是思考:认知强制函数可以减少人工智能辅助决策对人工智能的过度依赖。ACM 人机交互论文集 5,CSCW1 (2021),1-21。[3] Adrian Bussone、Simone Stumpf 和 Dympna O'Sullivan。 2015.对临床决策支持系统中信任和依赖的解释的作用。 2015年医疗信息学国际会议。 160–169。 [4] Arjun Chandrasekaran、Viraj Prabhu、Deshraj Yadav、Prithvijit Chattopadhyay 和 Devi Parikh。 2018.解释是否能让 VQA 模型对人类来说更具可预测性?在 EMNLP 中。 [5] Muhammad EH Chowdhury、Tawsifur Rahman、Amith Khandakar、Rashid Mazhar、Muhammad Abdul Kadir、Zaid Bin Mahbub、Khandakar Reajul Islam、Muhammad Salman Khan、Atif Iqbal、Nasser Al Emadi 等。 2020.人工智能可以帮助筛查病毒和COVID-19肺炎吗? IEEE Access 8 (2020),132665–132676。[6] Berkeley J Dietvorst、Joseph P Simmons 和 Cade Massey。2015 年。算法厌恶:人们在看到算法错误后会错误地避开它们。《实验心理学杂志:综合》144,1 (2015),114。[7] Mary T Dzindolet、Scott A Peterson、Regina A Pomranky、Linda G Pierce 和 Hall P Beck。2003 年。信任在自动化依赖中的作用。《国际人机研究杂志》58,6 (2003),697–718。[8] Ana Valeria Gonzalez、Gagan Bansal、Angela Fan、Robin Jia、Yashar Mehdad 和 Srinivasan Iyer。2020 年。人类对开放域问答的口头与视觉解释的评估。 arXiv preprint arXiv:2012.15075 (2020)。[9] Patrick Hemmer、Max Schemmer、Michael Vössing 和 Niklas Kühl。2021 年。混合智能系统中的人机互补性:结构化文献综述。PACIS 2021 论文集 (2021)。[10] Robert R Hoffman、Shane T Mueller、Gary Klein 和 Jordan Litman。2018 年。可解释人工智能的指标:挑战与前景。arXiv preprint arXiv:1812.04608 (2018)。
在我们这个不断发展的世界里,海量的数据无时无刻不在涌入——无论是每天、每小时,甚至是每分每秒。我们交流、分享链接、图像和观点,留下一串串的痕迹,不仅代表着我们广阔的自然环境,也反映了我们的想法、喜好和情绪。认识到这些数据的重要性,数据科学领域应运而生,致力于揭示其中隐藏的洞见。机器学习 (ML) 已成为一个令人着迷的研究领域[8],因其从大量数据集中提取知识的能力而备受瞩目[20]。机器学习在弥合我们对自然的理解与其复杂性之间的差距方面发挥了关键作用。深度学习 (DL),尤其是神经网络 (NN),彻底改变了经典的机器学习,成为建模统计数据的非线性结构[23]。 NN,尤其是卷积神经网络 (CNN),可以模拟输入和输出之间的复杂关系[8],在图像模式识别等任务上表现出色,而这些任务的灵感来自视觉皮层的结构。虽然 NN,尤其是多层 NN,已经展现出非凡的能力,但它们的可训练性却带来了挑战。反向传播的出现缓解了这个问题,但训练困难仍然存在,需要整流神经元激活函数和分层训练等解决方案。量子机器学习 (QML) 开辟了新途径,利用嘈杂的中型量子计算机来解决涉及量子数据的计算问题。变分量子算法 (VQA) 和量子神经网络 (QNN) 提供了有前景的应用,利用经典优化器来训练量子电路中的参数。QNN 通过分析具有多项式复杂度的系统[2][6](在经典机器学习中,该系统的复杂度将呈指数级增长),与经典模型相比具有独特的优势,从而提供了计算优势。值得注意的是,与传统神经网络相比,QNN 表现出更快的学习能力,这归因于第 1 章和 A 章中讨论的纠缠。先前的研究强调了 QNN 在从有限数据中学习方面的有效性,从而减少了训练过程中的时间和精力。这篇硕士论文深入研究了使用用最少图像训练的各种量子模型进行有效图像分类的可能性,最后直接与经典 CNN 性能进行了比较。使用两个不同的数据集进行训练,随后缩小规模以探索 QNN 模型比 CNN 预测更多图像的潜力。
摘要 随着量子计算从实验室的好奇心转变为技术现实,我们必须充分发挥其潜力,使不完善的量子技术在现实世界的应用中获得有意义的好处。实现这一愿景需要计算机架构师发挥关键作用,利用经典计算原理构建和促进混合计算生态系统,以获得实际的量子优势。首先,我将介绍我为构建这个混合生态系统所做的四项研究:经典应用转换、自适应噪声缓解、可扩展纠错和高效资源管理。其次,从经典应用转换的角度,我将介绍“CAFQA:变分量子算法的经典模拟引导程序”,它通过使用贝叶斯优化有效地搜索量子空间中可经典模拟的部分,从而实现 VQA 的精确经典初始化。CAFQA 恢复了之前最先进的经典初始化中丢失的 99.99% 的准确度,平均提高了 56 倍。第三,从可扩展纠错重点出发,我将介绍“Clique:优于最坏情况的量子纠错解码”,其中提出了用于低温量子系统的 Clique QEC 解码器。Clique 是一种轻量级低温解码器,用于解码和纠正常见的琐碎错误,因此只有罕见的复杂错误在低温制冷机外处理。Clique 消除了 90-99% 以上的低温制冷机 I/O 解码带宽,同时支持超过一百万个物理量子比特。最后,我将概述其他之前和正在进行的工作,以及我对实际量子优势的未来研究愿景。传记 Gokul Subramanian Ravi 是芝加哥大学 2020 年 NSF CI 研究员博士后学者,由 Fred Chong 教授指导。他的研究针对量子计算架构和系统,主要研究量子和经典计算交叉的主题。他于 2020 年获得威斯康星大学麦迪逊分校计算机架构博士学位,指导教授是 Mikko Lipasti 教授。他曾获得威斯康星大学麦迪逊分校颁发的 2020 年最佳 ECE 论文奖,并被评为 2019 年计算机架构新星。他的量子和经典计算研究已在顶级计算机架构、系统和工程会议上发表,并获得了两项专利和三项待批专利。他的合著作品被评为 HPCA 2022 最佳论文和 2023 年 IEEE Micro Top Picks 荣誉奖。
随着近期量子设备的问世和量子霸权实验的突破,量子计算在过去几年中受到了众多科学学科的广泛关注。尽管有优秀的教科书和讲义,如 [NC00、KSV02、Nak08、RP11、Aar13、Pre99、DW19、Chi21],但这些材料通常涵盖量子计算的所有方面,包括复杂性理论、量子设备的物理实现、量子信息理论、量子误差校正、量子算法等。这几乎没有空间来介绍如何使用量子计算机来解决科学和工程计算中具有挑战性的计算问题。例如,在初次阅读 Nielsen 和 Chuang [NC00] 的经典教科书(当然,只是部分章节)后,我既惊叹于量子计算机的潜在能力,也对其实际适用范围感到惊叹:我们真的要建造一台量子计算机来执行量子傅里叶变换还是执行量子搜索?量子相位估计是连接量子计算机和几乎所有科学计算问题(如求解线性系统、特征值问题、最小二乘问题、微分方程、数值优化等)的唯一桥梁吗?得益于量子算法发展的重大进展,现在应该不言而喻,上述两个问题的答案都是“否”。这是一个快速发展的领域,许多重要进展都是在过去几年中取得的。然而,许多此类发展都涉及理论和技术,对于仅具有量子计算基本知识的人来说可能难以理解。我认为,值得以一种更容易理解的方式,将这些令人兴奋的结果传递给更广泛的社区,让他们对使用未来的容错量子计算机解决科学问题感兴趣。这是加州大学伯克利分校数学系 2021 年秋季学期应用数学研究生专题课程《科学计算的量子算法》中使用的一套讲义。这些讲义只关注与科学计算密切相关的量子算法,特别是矩阵计算。事实上,从量子算法动物园 1 的角度来看,这只是一小类量子算法。这意味着许多重要的材料被有意遗漏了,例如量子复杂性理论、数论和密码学中的应用(尤其是 Shor 算法)、代数问题中的应用(如隐藏子群问题)等。对这些主题感兴趣的读者可以查阅一些上述优秀的教科书。由于这些材料旨在融入一个学期的课程,其他几个与科学计算相关的主题没有包括在内,特别是绝热量子计算 (AQC) 和变分量子算法 (VQA)。这些材料可能会添加到未来版本的讲义中。据我所知,
Lavinia Maria Mendes Araújo A, Plínio Márcio da Silva Ramos A, Isis Didier Lins A, Caio Bezerra Souto Maior AB, Rafael Chaves Souto Araújo C, Andre Juan Ferreira Martins de Moraes D, Asly Alexandre Canabarro D, Márcio José das Chagas Moura A, Enrique López Drogatt and the Center for Risk for For For For Risk For For For For For For For For For For For For For For For For the Center for For For For For For For For the Center for Risk For For For For For For For For For For For For For For For For For For For For For For For For For For the Center for Risk For For For For For For For the Center for Risk For For For For For For the Center for Risk for For Modeling, Department of Industrial Engineering, Federal University of Pernambuco,Recife,巴西B技术中心,Pernambuco联邦大学,Caruaru,Caruaru,巴西C国际物理研究所,Rio Grande University of Rio Grande University of Brazil d Do isis.lins@ufpe.br, caio.maior@ufpe.br, andre.jfmdm@gmail.com, askery@gmail.com, rafael.csa82@gmail.com, marcio.cmoura@ufpe.br, eald@g.edu Human Relianity is INCREASINGLY IMPORTANT IN ACCIDENT PREVENTION, AND MONITORING BIOLOGICAL PARAMETERS CAN HELP Detect Patterns Indicating Behaviors That May Lead发生事故。 脑电图(EEG)日期已用于识别油气行业机器操作员疲劳的主要原因。 虽然经典的机器学习方法(如多层珀普隆(MLP))已与脑电图数据一起使用,但量子计算在有效地解决复杂问题方面表现出了有望。 变化量子算法是应用于数据训练的经典结构的量子概念的一个例子。 本研究旨在将操作员嗜睡量子机器学习(QML)模型分类。 QML模型经过各种量子电路层,旋转和纠缠门训练。 1。Lavinia Maria Mendes Araújo A, Plínio Márcio da Silva Ramos A, Isis Didier Lins A, Caio Bezerra Souto Maior AB, Rafael Chaves Souto Araújo C, Andre Juan Ferreira Martins de Moraes D, Asly Alexandre Canabarro D, Márcio José das Chagas Moura A, Enrique López Drogatt and the Center for Risk for For For For Risk For For For For For For For For For For For For For For For For the Center for For For For For For For For the Center for Risk For For For For For For For For For For For For For For For For For For For For For For For For For For the Center for Risk For For For For For For For the Center for Risk For For For For For For the Center for Risk for For Modeling, Department of Industrial Engineering, Federal University of Pernambuco,Recife,巴西B技术中心,Pernambuco联邦大学,Caruaru,Caruaru,巴西C国际物理研究所,Rio Grande University of Rio Grande University of Brazil d Do isis.lins@ufpe.br, caio.maior@ufpe.br, andre.jfmdm@gmail.com, askery@gmail.com, rafael.csa82@gmail.com, marcio.cmoura@ufpe.br, eald@g.edu Human Relianity is INCREASINGLY IMPORTANT IN ACCIDENT PREVENTION, AND MONITORING BIOLOGICAL PARAMETERS CAN HELP Detect Patterns Indicating Behaviors That May Lead发生事故。脑电图(EEG)日期已用于识别油气行业机器操作员疲劳的主要原因。虽然经典的机器学习方法(如多层珀普隆(MLP))已与脑电图数据一起使用,但量子计算在有效地解决复杂问题方面表现出了有望。变化量子算法是应用于数据训练的经典结构的量子概念的一个例子。本研究旨在将操作员嗜睡量子机器学习(QML)模型分类。QML模型经过各种量子电路层,旋转和纠缠门训练。1。EEG信号已进行预处理,以提取相关特征,例如Higuchi分形维度,复杂性和迁移率以及统计特征。结果将与经典MLP模型进行比较。这项工作有助于探索QML嗜睡的背景,在文献中尚未对此进行广泛研究。它是QML模型适合此类数据的概念证明,并且随着量子计算的不断发展,可以进一步改进。关键字:脑电图。量子机学习。嗜睡检测。诊断。变异量子算法。简介量子力学提出了一种用于解决计算问题的新范式,有时比经典方法具有显着优势,例如在质量分解或量子系统模拟中(Maior等,2023)。在这项研究中,我们通过变异量子算法(VQA)利用量子机学习(QML)来分析一个实际问题 - 使用现实世界脑电图(EEG)时间序列数据检测嗜睡。我们在此扩展的摘要中分析了ULG多模式嗜睡数据库(也称为Drozy)的主题8(Massoz等,2016)。从脑电图数据中准确检测嗜睡对于确保行业和关键过程的安全至关重要。疲劳的工人可以在工作场所构成重大风险,尤其是在涉及危险行动的行业和