a 代尔夫特理工大学生物力学工程系,代尔夫特,荷兰;b 苏黎世联邦理工学院,新加坡未来弹性系统 - ETH 中心,新加坡;c 南安普顿大学工程与环境学院,交通研究组,南安普顿,英国;d 法国交通、发展与网络科学技术研究所,人体工程学与认知科学实验室,法国;e 代尔夫特理工大学交通与规划系,代尔夫特,荷兰;f 格罗宁根大学行为与社会科学学院,心理学系,格罗宁根,荷兰;g 特温特大学交通研究中心,特温特,荷兰;h 荷兰应用科学组织,荷兰索斯特贝格,TNO 人为因素研究所;i 慕尼黑工业大学机械工程系,人体工程学研究所,德国慕尼黑;j 瑞典国家道路与交通研究所,VTI,瑞典;k 利兹大学交通研究所,英国利兹; l 英国沃金厄姆交通研究实验室人为因素与模拟组;m 比利时布鲁塞尔 ITS 欧洲 ERTICO;n 荷兰海牙道路安全研究所 SWOV
作为对风洞结构、仪器和流动质量定期健康监测的一部分,在贝尔格莱德军事技术学院 (VTI) 的 1.5 m T-38 三音速风洞中对 AGARD-C 校准模型进行了一系列测试。测试包括测量跨音速马赫数范围内的力和力矩,目的是根据标准模型测试所采用的程序,将模型获得的空气动力学特性与其他风洞实验室的空气动力学特性进行比较。设施间相关性基于在加拿大国家研究委员会(后来作为国家航空研究所运营)的 5 英尺三音速风洞、罗马尼亚国家科学技术创造研究所的 1.2 m 三音速风洞和调试期间的 T-38 风洞中物理上相同模型的测试结果。对相关测试结果的分析证实了 T-38 测试段的流动质量良好、风洞结构和仪器状况良好以及数据缩减算法的正确性。在“正常”和“倒置”模型配置中获得的俯仰力矩系数数据中观察到了细微的差异,初步得出结论,这种影响可能是由于风洞试验段后部的流动略有不对称造成的,AGARD-C 模型以对俯仰的高灵敏度而闻名
几十年来,人们一直需要进行大攻角高速风洞测试 [1]-[3]。在早期的航天计划中,以及在航天飞机轨道器的研发中,这种能力对于载人太空舱大气再入测试是必不可少的,例如,航天飞机轨道器以 25 马赫和约 40º 的攻角开始大气再入,仅在 4 马赫以下攻角才会降至 20 ° 以下 [4][5]。此外,现代导弹经常在超音速大攻角条件下机动,因此在研发过程中需要对其空气动力学特性进行适当的实验验证。最近开发的许多具有返飞能力的可重复使用运载火箭概念也强调了对超音速大攻角风洞测试的持续需求。人们已经对大攻角空气动力学进行了大量的理论和实验工作 [5]-[8]。此外,工程级预测代码也已扩展,以涵盖高攻角条件 [9]。另一个需要进行高攻角超音速风洞测试的领域是计算流体力学 (CFD)。许多处理高攻角空气动力学的代码正在开发中,主要是为了支持航天飞机、再入舱和类似飞行器的开发。开发人员承认,高攻角空气动力学带来了许多挑战 [10]-[12]。用作这些代码测试用例的实验数据将
几十年来,人们一直需要进行大攻角高速风洞测试 [1]-[3]。在早期的航天计划中,以及在航天飞机轨道器的研发中,这种能力对于载人太空舱大气再入测试是必不可少的,例如,航天飞机轨道器以 25 马赫和约 40º 的攻角开始大气再入,仅在 4 马赫以下攻角才会降至 20 ° 以下 [4][5]。此外,现代导弹经常在超音速大攻角条件下机动,因此在研发过程中需要对其空气动力学特性进行适当的实验验证。最近开发的许多具有返飞能力的可重复使用运载火箭概念也强调了对超音速大攻角风洞测试的持续需求。人们已经对大攻角空气动力学进行了大量的理论和实验工作 [5]-[8]。此外,工程级预测代码也已扩展,以涵盖高攻角条件 [9]。另一个需要进行高攻角超音速风洞测试的领域是计算流体力学 (CFD)。许多处理高攻角空气动力学的代码正在开发中,主要是为了支持航天飞机、再入舱和类似飞行器的开发。开发人员承认,高攻角空气动力学带来了许多挑战 [10]-[12]。用作这些代码测试用例的实验数据将