来源:EVTOL飞机的建筑绩效评估和预期规格。百合工程评估与管理估算。1 Gama,JADC,公司信息(空中客车,波音,庞巴迪,巴西航空工业人),2009年至2019年。2基于飞机当前发展状态的估计;最高速度基于百合工程评估,假设飞行为10,000英尺;范围是指物理范围(服务范围 +储量);营业范围为175公里。3百合的初级认证机构规定灾难性失败的可能性不得超过10 -9。管理估算。
- 目前通过降落测试的撞车道值针对燃料电池和燃油箱进行调节。由于燃油箱的流行和飞机中电池系统的新颖性,Easa采用了这些燃油箱掉落测试要求,将电池系统用作起点。FAA也在同时研究更永久的方法的同时,正在追求这一道路。- 燃油系统的滴测试需要将50英尺的几乎填充的燃料系统置于平坦的,不形成的表面上。在滴落后,监视燃油系统以泄漏或火灾。同样,电池系统应重新充电并从至少50英尺处掉落,然后监视气体或液体的泄漏以及火灾或爆炸。•此测试程序和仿真研究将提供有关与FAA和行业相关的项目的信息:
摘要:随着垂直起降无人机(VTOL UAV)的日益普及,一个新的问题出现了:飞行员训练。大多数传统的飞行员训练模拟器都是为全尺寸飞机设计的,而大多数无人机模拟器仅专注于概念测试和设计验证。X-Plane飞行模拟器进行了扩展,包括复杂的风动力学、地面效应和准确的实时天气等新功能。商用HIL飞行控制器与VTOL垂直起降飞机无人机模型相结合,以提供逼真的飞行控制。在模拟中测试了一个真实的飞行案例场景,以显示包含精确的风模型的重要性。结果是一个完整的模拟环境,已成功部署用于FuVeX制造的Marvin飞机的飞行员训练。
摘要:随着垂直起降无人机 (VTOL UAV) 的日益普及,出现了一个新问题:飞行员培训。大多数传统的飞行员训练模拟器都是为全尺寸飞机设计的,而大多数无人机模拟器仅专注于概念测试和设计验证。X-Plane 飞行模拟器进行了扩展,包括复杂的风动力学、地面效应和准确的实时天气等新功能。商用 HIL 飞行控制器与 VTOL 垂直起降飞机无人机模型相结合,以提供逼真的飞行控制。在模拟中测试了一个真实的飞行案例场景,以显示包含精确的风模型的重要性。结果是一个完整的模拟环境,已成功部署用于 FuVeX 制造的 Marvin 飞机的飞行员训练。
2.21 在麦克风上方 150 英尺的高度(交替从北向南和从南向北飞行)以两种不同的飞行速度(“慢速”和“快速”)进行飞越测量,旨在代表麦克风上方的最小和最大功率操作。此外,多旋翼飞行器测试包括一系列模拟起飞和降落,高度为 150 英尺 14 英尺,以及在 4 英尺处进行悬停机动,其中包括四个基本罗盘方向(测量期间每个方向保持 30 秒)。作者还提供了俄克拉荷马州研究中收集的多旋翼飞行器噪音测量值与迄今为止进行的其他已知 UAS 噪音测试(包括 Cabell, R 等人报告的 NASA 飞越噪音水平研究)的“粗略比较”。
摘要:本文将新颖的 LPV(线性参数变化)模型和 MPC(模型预测控制)方法应用于电动垂直起降飞机的倾斜过渡过程,该飞机具有六个分布式电动旋翼和固定翼,用于平飞,其中两个旋翼可倾斜以在从悬停到稳态平飞的倾斜过渡期间产生可变推力矢量,其余四个旋翼不能倾斜。在平飞过程中,固定翼引起的气动升力保持飞行高度。基于由倾转旋翼角位置和故障旋翼速度预定的标称倾斜轨迹,通过沿倾斜轨迹线性化非线性 eVTOL 飞机模型,基于显著减少的线性时不变模型数量构建了离散时间 LPV 模型,其中倾转旋翼角度和故障旋翼速度可以实时测量。提出了一种基于σ移位H 2 范数的LPV建模误差评估方法,并设计了具有动态参考补偿的自适应模型预测控制器。仿真研究表明,基于转子故障倾斜过渡LPV模型的自适应MPC策略是成功的。
在过去的十年中,电动汽车的改编已从利基市场发展为广泛接受,2021年售出了60万台电动或插电式电动汽车,在2020年中占138%[1]。截至2022年3月,电动汽车市场仅占市场份额的4.6%[2];但是,汽车高管认为,在未来十年中,全部新销售中的一半将是电动汽车[3]。在过去十年中,航空航天行业也发生了变化。随着电动汽车的流行和电推进技术的发展,这导致了电动垂直起飞和着陆(EVTOL)飞机的创造和开发。这些车辆利用全电动或混合电力推进系统,并主要迎合城市环境中个人运输的任务。这些车辆的成熟将导致城市运输的范式转变。这些车辆有望像商业出租车一样操作,能够通过空中在城市环境中在城市环境中运输人员,从而绕开道路交通并创造更快,更有效的旅行。实际上有数百辆正在开发的车辆[4],到2040年,市场有可能扩大到1万亿美元。当前在设计或原型阶段中的绝大多数EVTOL飞机都利用电动或混合电动推进系统。这种类型的系统是使用气体发动机的常规液体推进系统的新替代品。这些由储能系统(ESS)组成,它们通常是连接到各种电动机和螺旋桨的大型锂离子电池模块以及相关的电池管理系统(BMS)。这些系统的创建是为了解决在城市环境中运营重要的因素,通过静静,经济运行,同时产生零或接近零排放作为环境因素。一个障碍阻碍这些新飞机的潜在增长和接受是ESS系统的认证方面。虽然ESS系统的认证必须基于多种要求,但本文档将仅讨论一个特定的要求差距,该差距与与ESS在动态不良事件或崩溃中相关的未知数涉及的涉及。在发生广泛适应之前,将需要克服此障碍。尽管存在ESS存在的现有飞机监管指南和标准(在本文档中可以识别),但它们主要涵盖不当,安装或将电池分类为次要电源。在确定证明撞车性ESS的程序时存在一个主要差距,主要是锂离子电池作为推进的主要手段。本文档讨论了NASA进行的研究,以确定可以用作认证基础的测试方法的有效性,以便提供数据并深入了解车辆ESS测试。此见解对于车辆原始设备制造商(OEM)以及其他研究人员,监管机构,标准组织和感兴趣的各方都很有价值。在锂离子电池化学,机械测试和与相关危害的影响测试的领域进行了文献综述,以了解有关当前可用的测试方法,并可能推断出解决ESS崩溃的可能性。使用了各种来源,包括相关标准文件,研究文章,与主题专家的讨论以及其他相关文献和新闻文章。本文档总结了NASA提供和收集的信息。
由于新技术的出现,故障信号对测量技术的影响最近发生了重大变化。由于技术转向更多的电力驱动和氢技术,传感器也应该在这种环境下提供可重复和可靠的数据。为了继续确保测量结果的质量,必须重新考虑、修改和测试传感器和电缆概念。本演讲的目的是指出与采用压电 ICP ® 和 MEMS-DC 技术的振动和加速度传感器相关的这些问题,并展示改进和解决方案的示例。将介绍产品改进,并展示电动汽车领域测试系列的测量结果。将讨论最佳布线、电缆选择和接地概念的实用建议。讨论了使用安慰剂传感器验证测量结果的观点。这些发现和改进建议对电动汽车开发领域以及城市空中交通 (UAM) 的 eVTOL 的测试和测量工程师在选择传感器及其使用方面有很大帮助。
UAM.OP.VCA.050 范围...................................................................................................... 190 UAM.OP.VCA.105 使用机场或运行场地 .............................................................................. 190 UAM.OP.VCA.125 滑行和地面活动 ...................................................................................... 191 UAM.OP.VCA.130 噪声消减程序 ...................................................................................... 191 UAM.OP.VCA.135 航线和运行区域 ...................................................................................... 191 UAM.OP.VCA.145 确定最低飞行高度和侧向净空距离 ............................................................................................. 192 UAM.OP.VCA.150 燃料/能源方案 - 一般规定 ............................................................................. 192 UAM.OP.VCA.155 燃料/能源方案 - 燃料/能源规划和飞行中重新规划 .193 UAM.OP.VCA.160 燃料/能源方案——机场或运营地点的选择 .............................................. 195 UAM.OP.VCA.165 燃料/能源方案——飞行中燃料/能源管理 .............................................. 195 UAM.OP.VCA.170 航空器的特殊加油或放油 ............................................................................. 195 UAM.OP.VCA.190 提交 ATS 飞行计划 ............................................................................. 196 UAM.OP.VCA.210 飞行员在其指定站点 ............................................................................. 196 UAM.OP.VCA.245 气象条件 ............................................................................................. 196 UAM.OP.VCA.250 冰和其他污染物——地面程序 ............................................................................. 196 UAM.OP.VCA.255 冰和其他污染物——飞行程序 ............................................................................. 196 UAM.OP.VCA.260燃油供应 ................................................................................................................ 198 UAM.OP.VCA.265 起飞条件 ................................................................................................ 198 UAM.OP.VCA.270 最低飞行高度/高 ........................................................................................ 198 UAM.OP.VCA.275 模拟飞行中的异常情况 ............................................................................. 198 UAM.OP.VCA.290 接近检测 ...................................................................................................... 198 UAM.OP.VCA.295 防撞 ............................................................................................................. 199 UAM.OP.VCA.300 进近和着陆条件 ............................................................................................. 199 UAM.OP.VCA.315 飞行小时报告 ............................................................................................. 199 UAM.OP.MVCA.050 范围 ............................................................................................................. 199 UAM.OP.MVCA.100 使用空中交通服务(ATS) ................................................................ 199 UAM.OP.MVCA.107 适当的机场 .............................................................................. 200 UAM.OP.MVCA.110 机场运行最低标准 .............................................................................. 201 UAM.OP.MVCA.125 仪表离场和进近程序 ...................................................................... 201 UAM.OP.MVCA.126 基于性能的导航(PBN) ............................................................. 201 UAM.OP.MVCA.155 特殊类别旅客(SCP)的运载 ............................................................. 202 UAM.OP.MVCA.160 行李和货物的积载 ............................................................................. 202
影响结构性能或影响其余系统维持结构性能的可靠性的条件,则应满足 VTOL.2205 的规定,以适应放行条件和后续故障。在将 Qj 确定为图 2 和图 3 中安全裕度的放行故障条件和后续故障条件的综合概率时,可以考虑飞行限制和预期运行限制。这些限制应使得处于这种综合故障状态并随后遇到极限载荷条件的概率极小。如果后续系统故障率大于每小时 10 -3,则不允许降低这些安全裕度。