摘要。如今,许多摄影测量测绘方法都使用无人机来检索和记录有关地球上物体的数据。这是因为使用配备 GNSS(全球导航卫星系统)的无人机进行测量比租用飞机非常高效且更便宜,它还可以飞越难以到达的区域并大大缩短时间。罗马尼亚的无人机技术发展仍处于起步阶段,立法框架甚至对小型无人机也施加了某些限制。因此,为了使用该飞机,需要获得罗马尼亚民航局的批准,以及国防部的批准。通过这种方式,飞行在距离、高度和面积方面受到监管。本研究的目的是实现和技术详述通过摄影测量技术(UAS/UAV)生成正射影像图和三维模型的工作流程,这些工作流程可用于各种地形地籍工作或作为叠加分析的主要地理空间数据,用于其他各个领域:城市化、农业、空间规划、地貌学等。本文介绍了无人机摄影测量数据在阿拉德县 Labaşinţ 地区测绘中的应用结果,使用 WingtraOne VTOL 尾随无人机,配备索尼 RX1RII 相机,配备 42.4 兆像素 CMOS 传感器、35 毫米、全画幅和 GNSS 系统。精度高。数据处理的最后阶段包括生成正射影像平面、马赛克、栅格图像、TIN 和 DEM 格式以及生成点云。目前,无人机在空间科学领域的应用需求很高,因为与卫星系统相比,无人机操作相对简单,成本相对低廉,尤其是高分辨率图像。使用无人机的好处之一是,它们可以拍摄航空照片,然后对其进行处理以进行测绘,从而可用于支持空间数据的获取。关键词:WingtraOne、Pix4Dmapper、DEM、DTM、DSM、Labasint、领土分析。
摘要 随着近年来嵌入式系统计算功率的增加,应用于多旋翼航空系统 (MAS) 的控制理论引起了人们的关注。这些系统现在能够以较低的传感器和执行器成本执行各种控制技术所需的计算。这些类型的控制算法应用于 MAS 的位置和姿态。本文简要概述并评估了多旋翼航空系统(特别是 VTOL - 垂直起降飞机)的流行控制算法。主要目标是提供统一且易于理解的分析,将 VTOL 车辆的经典模型和所研究的控制方法置于适当的环境中。从而为从事航空器的初学者提供基础。此外,这项工作还有助于全面分析非线性和线性反步、嵌套饱和和双曲有界控制器的实现。通过模拟和实验研究,选择并比较了这些技术以评估飞机的性能。
VTOL.2600 飞行机组舱 (a) 飞行机组舱布置,包括飞行机组视野及其设备,必须允许飞行机组在飞机飞行包线内执行任务,而无需过度集中注意力、提高技能、保持警觉或疲劳。 (b) 申请人必须安装飞行、导航、监视和升力/推力系统安装控制装置和显示器,以便合格的飞行机组可以监视和执行与系统和设备预期功能相关的规定任务。系统和设备的设计必须考虑到飞行机组的错误,因为这些错误可能会导致额外的危险。 (c) 对于增强类,飞行机组界面设计必须允许在任何一个挡风玻璃板失去视线后继续安全飞行和着陆。
影响结构性能或影响其余系统维持结构性能的可靠性的条件,则应满足 VTOL.2205 的规定,以适应放行条件和后续故障。在将 Qj 确定为图 2 和图 3 中安全裕度的放行故障条件和后续故障条件的综合概率时,可以考虑飞行限制和预期运行限制。这些限制应使得处于这种综合故障状态并随后遇到极限载荷条件的概率极小。如果后续系统故障率大于每小时 10 -3,则不允许降低这些安全裕度。
VTOL.2600 飞行机组舱 (a) 飞行机组舱布置(包括飞行机组视野)及其设备必须允许飞行机组在飞机飞行包线内执行任务,而无需过度集中注意力、提高技能、保持警觉或疲劳。 (b) 申请人必须安装飞行、导航、监视和升力/推力系统安装控制装置和显示器,以便合格的飞行机组可以监视和执行与系统和设备预期功能相关的规定任务。系统和设备设计必须考虑到飞行机组的错误,因为这些错误可能会导致额外的危险。 (c) 对于增强类,飞行机组界面设计必须允许在任何一个挡风玻璃板的视野丧失后继续安全飞行和着陆。
无人机最初是在军事领域使用无人机系统开发的,结合了航空航天技术与信息通信技术,具有多种用途,包括民用领域。为侦察领域而开发,在民用和警察领域都用于交通监控和高空侦察任务。它用于广播和监视,同时不断扩展到快递和救援任务领域。基于各种SW,传感器和飞行控制等航空技术的融合,以利用无人系统和信息通信技术,相关技术的商业化正在以非常多样化的方式发展。在本文中,我们提出并制造了VTOL无人机。设计过程参考了我们设计的 VTOL 开发过程,实际建造无人机也应用了相同的 VTOL 开发概念。为了了解飞机的空气动力学特性,我们应用了空气动力学设计理论,并使用了可以替代实际风洞试验的 CAE 方法。我们测试了组成无人机的内部模块的选择方法和标准,并且能够组装产品。对飞行控制计算机进行了 FW 编码以进行 VTOL 控制。此外,我们开发了用于长距离飞行的 LTE 通信模块,并与 GCS 一起进行了飞行实验,以从地面观察和响应飞行情况。飞行测试结果表明,在宽带下可以实现稳定的过渡飞行。我们可以看到,与我们的开发目标值相比,实际性能结果得到了满足。
首先,我要感谢 Rogelio Lozano 教授邀请我加入墨西哥的 CINVESTAV-IPN / CNRS UMI3175 LAMFIA Cinvestav,没有他,这篇论文就不可能完成。他鼓励我继续研究一个非常创新的概念,并帮助我调查其可行性。我感谢他贡献的所有时间和想法。我非常感谢墨西哥政府在他的支持下为我提供的奖学金。此外,这篇论文受益于该实验室和 ISAE SUPAERO(法国图卢兹)在 Patrick Fabiani 博士的指导下进行的联合监督。我得到了无人机概念所依赖的两个科学领域的顶尖研究人员的建议和指导:航空学和控制系统。我非常感谢我的论文指导老师 Rogelio Lozano 教授、Moisés Bonilla Estrada 教授和 Patrick Fabiani 博士,感谢他们在这项研究中对我的科学跟进和提出的深刻见解。我还要感谢 Cinvestav 和 ISAE SUPAERO 的所有工作人员和同事在过去三年中给予我的帮助。我特别感谢在无人机演示器开发过程中提供的帮助以及允许我使用几台原型机。最后,我要向我的家人表示最深切的谢意,感谢他们在这段丰富而漫长的冒险中给予的不懈支持。我要特别感谢我的兄弟 Adrien Cabarbaye 在电子学、计算机科学和英语方面的支持。
会影响结构性能或影响其余系统维持结构性能的可靠性的状况,则应满足 VTOL.2205 中关于放行状况和后续故障的规定。在将 Qj 确定为图 2 和图 3 中安全裕度的放行故障状况和后续故障状况的组合概率时,可考虑飞行限制和预期运行限制。这些限制应使得处于这种组合故障状态并随后遇到极限载荷状况的概率极小。如果后续系统故障率大于每小时 10 -3,则不允许降低这些安全裕度。
i特此声明,本文档中的所有信息均已根据学术规则和道德行为获得并介绍。我还声明,根据这些规则和行为的要求,我已经完全引用并引用了这项工作不是原始的所有材料和结果。
未来战斗系统最初设想是大幅提高士兵的作战效率和能力。FCS 网络能力允许近乎实时的决策,从而带来革命性的作战能力。FCS 将从线性战斗转变为网络化部队——分布式小型部队,可利用现有空运资产随时部署和空中支援。这些轻型武装部队将依靠紧密耦合、快速反应的支援资产,这些资产使排级和班级人员能够实时调用更大、更重的部队的强大火力,进行进攻打击和部队保护。网络是一个不可或缺的要素,将 FCS 部队与地面、空中和海上精确火力直接耦合。FCS 部队将分布在整个战斗部队中,但不会是整个部队——它们将依靠其他资产来发挥战斗力。