政府领导 10:15 AM 0:05:00 Angelo Collins (主席) 垂直飞行协会执行董事 10:20 AM 0:20:00 Larry Fields 前主任,飞行标准服务 (AFX-1) 美国联邦航空管理局 10:40 AM 0:30:00 Michael Patterson 博士,ConOps 和分析主管,NASA AAM 任务集成办公室 11:10 AM 0:30:00 LTC Shawn Naigle,博士,美国陆军设计、模拟和实验副助理主任,美国陆军 DEVCOM AvMC TDD 特别公告 11:40 AM 0:20:00 Gwen Lighter GoAERO 首席执行官午餐 12:00 PM 1:00:00 电动垂直起降 1:00 PM 0:05:00 Elan Head (主席) 高级编辑 The Air Current Leaders 1:05 PM 0:20:00 Tom Anderson Archer Aviation 首席运营官下午 1:25 0:20:00 Chris Caputo(受邀)飞行运营与培训 Beta Technologies 下午 1:45 0:20:00 Luiz Valentini(受邀)首席技术官 Eve Air Mobility 下午 2:05 0:20:00 Peter "Wizzer" Wilson 飞行标准与培训主管 Joby Aviation * 下午 2:25 0:20:00 Mikaël Cardinal 电子航空、器官输送系统副总裁 Unither Bioelectronics * 休息 下午 2:45 0:30:00 自主垂直起降 下午 3:15 0:00:00 Ajay Sehgal(主席)高级技术研究员 KBR Leaders 下午 3:15 0:20:00 Yemaya Bordain 博士 首席商务官兼美洲区总裁 Daedalean AI * 下午 3:35 0:20:00 Lyle Chamberlain 近地自主技术首席技术官 *下午 3:55 0:20:00 Erick Corona 空域运营整合总监 Wisk Aero * 总结 下午 4:15 0:10:00 Ariel Louie 技术总监 VFS 亚利桑那分会参展商招待会 下午 4:30 6:00
摘要 — 随着传统管制空域的空中交通密度和复杂性不断增加,以及个人空中交通或按需空中出租车在低空空域预计会进行大量垂直起降 (VTOL) 操作,未来需要一个自主空中交通管制系统(完全自动化的空域)作为处理密集、复杂和动态空中交通的最终解决方案。在这项工作中,我们设计并构建了一个人工智能 (AI) 代理来执行空中交通管制排序和分离。方法是将此问题制定为强化学习模型,并使用分层深度强化学习算法来解决它。为了演示,NASA Sector 33 应用程序已被用作我们的代理的模拟器和学习环境。结果表明,该 AI 代理可以安全有效地引导飞机通过“Sector 33”,并在计量定位点实现所需的分离。
图 12.混合多旋翼飞行器概览 - 固定翼稳定控制律 已开发了两个附加控制律:1.改进的偏航控制。在传统的多旋翼飞行器上,偏航控制是通过增加沿预期偏航旋转方向相反的发动机转速并同时降低相反发动机转速来产生偏航轴扭矩来实现的,以使飞行器保持恒定的高度。但在大型多旋翼飞行器上,螺旋桨扭矩可能不足,导致控制和响应迟缓。由于拟议的 VTOL 设计的两个后置发动机可以单独倾斜,因此通过稍微向相反方向倾斜发动机可以提高偏航响应能力(图 13)。CATIA 系统模拟表明,±10° 倾斜范围可使偏航率加倍,同时还能提高偏航启动/停止响应能力。
我们与 Rocketmine 合作,开创了新的测绘解决方案。Rocketmine 是一家全球无人机数据服务提供商,为多个行业提供跨大洲的全套交钥匙无人机解决方案,包括采矿、农业、工程、可再生能源、安全和医疗等。这项任务是在加纳/西非赤道丛林环境中勘测 6,500 公顷的区域。这种极端的操作环境为我们的 Trinity F90+ VTOL 无人机解决方案与 Qube 240 LiDAR 有效载荷的组合提供了理想的试验平台。茂密的丛林环境对传统的摄影测量测量技术和 RGB 传感器来说是个问题,因为它们无法穿透地形的各个树层。作为 Quantum-Systems 无人机解决方案在该地区首次积极部署,Rocketmines 团队能够率先使用这项突破性技术并快速收集相关数据以完成任务目标。
空中发射 - 载人飞机 - 气球 Zephyr QinetiQ - 履带式翼伞 Exdrone BAI Aerosystems - UAV (Predator) Finder NRL 蹦极绳(手动张紧) DragonEye AeroVironment 罐式发射(手持) - Black Widow AeroVironment - MATE Dutch Space 汽车/卡车发射 - Aerosonde Aerosonde - Snow Goose MMIST 集装箱发射 - 气动 Neptune DRS Technologies - RATO KZO Rheinmetall DE 手动发射 - Aladin EMT - Carolo Mavionics - 追踪器 EADS D&SS 发射器 - 蹦极 LUNA EMT - 液压 Phoenix BAE Systems - 气动 Sperwer Sagem - 大气 Vulture Mk II ATE RATO(火箭辅助起飞) Pioneer Pioneer UAV Inc 武器发射 正在开发中鱼雷管发射 正在开发中 轮式起飞 - 捕食者 通用原子公司 AS - 全球鹰 诺斯罗普·格鲁曼公司 VTOL RMax 雅马哈发动机公司
空中客车直升机公司与赛峰直升机发动机公司在巴黎航展上签署了一份意向书 (LoI),正式表明双方愿意联合展示未来技术,这些技术将大大有助于减少未来垂直起降 (VTOL) 平台的二氧化碳排放量和噪音水平。双方将研究多种技术流,包括不同程度的电气化、更高效的燃气轮机或替代燃料,以及先进的发动机架构,以进一步减少涡轮机的噪音。空中客车直升机公司和赛峰直升机发动机公司多年来一直致力于开发先进的推进解决方案,包括最近推出的创新型电动“生态模式”,可在双引擎直升机飞行过程中暂停和重新启动燃气轮机。这项技术将节省燃料并增加续航里程,将在 Racer 高速演示机上进行测试,该演示机是在欧洲 Clean Sky 2 研究计划框架内开发的。
摘要 本文旨在设计和研究无人驾驶飞行器 (UAV) 六旋翼飞行器在三维空间中的动态模型。基于牛顿-欧拉法确定了导出的运动方程。这些方程具有非线性和耦合性。此外,为了使六旋翼飞行器具有真实的运动,模型中还嵌入了气动效应和扰动。六旋翼飞行器是一种垂直起降 (VTOL) 飞行器,具有悬停能力和灵活性,因此与固定翼飞行器相比毫不逊色。尽管如此,它的动态模型很复杂,被描述为不稳定的,并且不能在不扭转其轴的情况下进行平移运动。除了控制和仿真设计模块外,还通过 LabVIEW 软件建立了结论性数学模型。因此,对多个实验状态的稳定性进行了分析,以便提前展示用于平衡和轨迹跟踪的适当控制器。关键词:——无人机,六旋翼飞行器动力学,非线性控制,耦合和欠驱动模型,牛顿-欧拉方法。
在印度的ST公司在当地开发垂直起飞和降落(VTOL)无人机。其核心优势在于新技术和产品开发中,这导致了改进的无人机版本。拥有自己的专有自动驾驶仪子系统和地面控制软件,例如Bluefire Touch,“地面控制站软件”,这是全球为数不多的OEM之一。它还专注于在全球市场上扩展其占地面积,并最初以美国市场为目标,该市场旨在在公共安全,执法机构和企业周围的其他用例等领域推销其产品。全球无人机市场可能会从CY22-30E报告20%的复合年增长率,而印度市场预计将报告22-27E的复合年增长率为80%,这是由于用例增加而驱动的。我们认为,该公司是正式政策的主要受益者,增加了跨国公司的无人机使用,例如国防,物流,公共安全,基础设施等。我们预计24-27E之间的收入/EPS复合年增长率为24%/26%。以40x fy27e EPS的估价为40x INR的购买评级和TP。
本文的目的是开发一种既具有垂直起飞 (VTOL) 能力又具有固定翼飞机能力的固定翼飞机。为了实现这一目标,开发了一种带有两个螺旋桨的固定翼旋翼机原型,其旋翼可以像无人机一样机动,同时还具有类似直升机的垂直起降能力。这项研究为旋翼机提供了制导、导航和控制算法。首先,本研究描述了固定翼飞机的动力学及其控制输入,即油门、桨叶螺距和推力矢量。其次,分析了来流速度、作用在旋翼叶片上的力以及影响旋翼速度的因素。然后,给出了旋翼、双引擎、机翼以及垂直和水平尾翼的数学模型。随后,设计了使用全球处理系统 (GPS) 模块的飞行控制策略。检查的参数包括姿态、速度、高度、转弯和起飞控制。最后,基于硬件在环 (HWIL) 的仿真证明了导航制导和控制机制的有效性和稳健性。仿真证实,所提出的新机制是稳健的,并满足任务要求。旋翼机在整个飞行过程中保持稳定,并有效地操纵指定路径。