您可以使用安装在 Windows* 主机上的 Intel ® System Studio 来识别和分析目标 Windows 系统的能源使用情况。Intel System Studio 的 Intel Energy Profiler 功能使用目标系统上的 Intel SoC Watch 收集器来分析目标系统的功率和能耗。通过 Intel SoC Watch 收集器收集的数据可以导入主机系统上的 Intel VTune ™ Amplifier for Systems,以可视化结果并了解目标系统的能源使用情况。本教程将指导您完成使用 Intel SoC Watch 收集器收集能源数据并在 VTune Amplifier for Systems 中查看数据所需的工作流程步骤。
第 1 章:能源分析用户指南 能源分析工作流程 ......................................................................................3 构建和管理能源分析驱动程序 ......................................................................6 为能源分析准备目标 Linux* 系统 ........................................................8 为能源分析准备目标 Android* 系统 ........................................................9 为能源分析准备目标 Windows* 系统 .................................................. 10 Intel ® SoC Watch 命令行工具选项 ............................................................. 11 运行能源分析 ...................................................................................... 13 使用 Intel ® VTune ™ Profiler 查看能源分析数据 ............................................. 15 使用 Intel ® VTune ™ Profiler 解释能源分析数据 ............................................. 16 使用 Intel ® System Studio 运行能源分析 ............................................................. 19 使用 Intel ® System Studio 查看能源分析数据 ............................................. 23 将能源分析结果导入 Intel ® System Studio ............................................. 25 能源分析指标参考 ............................................................................. 26 可用核心时间 ............................................................................................. 26 C 状态 ............................................................................................. 26 D0i x 状态 .................................................................................... 27 DRAM 自刷新 ................................................................................ 27 能耗 (mJ)................................................................................... 27 空闲唤醒 .............................................................................................. 27 P 状态 .............................................................................................. 27 S0i x 状态 .............................................................................................. 28 温度.................................................................................................... 28 定时器分辨率 ...................................................................................... 28 C0 状态下的总时间 ............................................................................. 28 非 C0 状态下的总时间 ............................................................................. 28 S0 状态下的总时间 ............................................................................. 29 总唤醒次数 ............................................................................................. 29 唤醒次数.................................................................................................... 29 每个核心每秒的唤醒次数 ............................................................................. 29 法律信息.................................................................................................... 29
所提出的 VCO 架构基于参考文献 [16-18] 中研究的 Colpitts 结构以及作者在 [12] 中提出的结构,如图 2 所示。该振荡器的有源部分由两个晶体管 pHEMT 1 和 pHEMT 2 组成:每个晶体管有 4 个指状物,栅极长度和宽度分别为 0.25 µm 和 20 µm。指状物数量越多,输出功率就越大 [19]。每个晶体管都偏置在工作点 (VDS=2.2 V, VGS -0.6 V),三个电感 Ld1、Ld2 和 Lg 分别等于 0.15 nH、0.15 nH 和 0.1 nH。电路的性能在很大程度上取决于偏置条件 [20],因此偏置电压和电感的值需要仔细选择。 VCO 的谐振电路基于两个源漏短路晶体管 pHEMT 3 和 pHEMT 4。因此,这两个晶体管充当变容二极管,其电容值由施加到其栅极的电压源 Vtune 调整。