白质消失 (VWM) 是一种由 eIF2B 亚基隐性变异引起的白质营养不良。目前,尚无治愈性治疗方法,患者常常英年早逝。由于其单基因特性,VWM 是开发 CRISPR/Cas9 介导的基因治疗的有希望的候选对象。在这里,我们在 VWM 小鼠中测试了一种双 AAV 方法,该方法编码 CRISPR/Cas9 和 DNA 供体模板以纠正 Eif2b5 中的致病变异。我们进行了测序分析以评估基因纠正率,并检查了对 VWM 表型(包括运动行为)的影响。序列分析表明,在目标基因座处超过 90% 的 CRISPR/Cas9 诱导的编辑是插入或缺失 (indel) 突变,而不是通过同源定向修复从 DNA 供体模板进行的精确校正。大约一半的 CRISPR/Cas9 治疗动物过早死亡。 VWM 小鼠在 7 个月大时运动技能、体重或神经系统评分均未改善,而 CRISPR/Cas9 处理的对照组则表现出诱导的 VWM 表型。总之,CRISPR/Cas9 在 Eif2b5 基因座处诱导的 DNA 双链断裂 (DSB) 未导致 VWM 变异的充分校正。此外,Eif2b5 中的插入/缺失形成会加剧 VWM 表型。因此,DSB 独立的策略(如碱基编辑或主要编辑)可能更适合 VWM 校正。
尽管人工耳蜗 (CI) 在恢复聋哑或重听 (DHH) 儿童的听力方面已被证明是有效的,但迄今为止,单侧和双侧 CI 使用者儿童 (CI) 的言语工作记忆 (VWM) 能力都存在极大的差异。尽管临床经验早已观察到 CI 的这一基本执行功能存在缺陷,但迄今为止原因仍不清楚。在这里,我们着手研究在两种感觉模式(听觉和视觉)进行的三级难度 n-back 任务中,CI 与听力正常 (NH) 同龄人相比,在单耳和双耳聆听的影响下大脑功能的差异。这项开创性研究的目的是确定 CI 与 NH 同龄人相比在视觉和听觉 VWM 表现中的脑电图 (EEG) 标记模式差异,以及单侧人工耳蜗 (UCI) 和双侧人工耳蜗 (BCI) 使用者之间可能存在的差异。主要结果揭示了脑电图的θ和γ波段的差异。与听力控制和BCI相比,UCI在听觉任务最复杂的条件下表现出额叶区域θ激活减退,并且相同的激活与VWM表现相关。与BCI相比,UCI在左半球也观察到θ激活减退,与BCI和NH相比,UCI在γ波段也观察到θ激活减退。对于后两者,发现左半球γ振荡与音频任务的表现之间存在相关性。根据最近的研究,这些发现表明单侧CI在支持DHH的听觉VWM方面存在不足。同时,双侧CI将使DHH儿童接近NH儿童的VWM基准。本研究表明,EEG可能通过有针对性的方法有效支持DHH儿童VWM的诊断和康复。
非侵入性大脑刺激已被强调为诱导认知益处的一种干预措施,包括视觉工作记忆(VWM)。但是,发现可能是由于方法论问题而造成的。Wang等人最近的一项高案例研究。1报告说,阳极经颅直流电流刺激(TDC)在后顶叶皮层(PPC)上,但不是背外侧前额叶皮层(DLPFC),尤其不是在高VWM载荷下,尤其不是精度。因此,在当前预先注册的概念复制研究中,我们说明了原始研究中的关键潜在方法论问题,并测试了足够数量的参与者来证明先前报道的效果(n = 48与n = 20相比)。参与者在完成360个连续取向重新生产任务的试验之前,接受了平衡的PPC,DLPFC和假刺激,并具有略有变化的任务刺激和设置。我们没有发现PPC刺激的选择性作用的证据。相反,我们的结果表明,无论刺激区域和VWM负载如何,TDCS效应都没有,这在很大程度上得到了强大的贝叶斯证据的支持。因此,我们的结果挑战先前报告了VWM上单会阳极PPC-TDC的好处。
从视觉观察中学习的强化学习是许多现实世界应用的一个挑战性问题。现有算法大多依赖于需要人类知识的精心设计的固定相机的单个观察结果。最近的研究从不同的观点中学习了使用固定相机的不同观点,但这会产生高的组合和存储成本,并且可能无法保证最佳观点的覆盖范围。为了减轻这些局限性,我们提出了一种直接的视图条件,部分可观察到的马尔可夫降低过程(VPOMDPS)假设,而de-velop是一种新方法,即基于mo del的se nsor Controlle r(Moser)。Moser共同学习一个视图条件世界模型(VWM),以模拟环境,控制相机的感官政策以及完成任务的电动机政策。我们设计了带有其他模块的VWM的固有奖励,以指导感官策略以调整相机参数。关于运动和操纵任务的实验,Moser自主发现任务特定的观点并显着胜过大多数基线方法。