定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
efrag - 欧洲财务报告咨询小组 - 开发了欧洲可持续性报告标准(ESRS),该标准为公司报告环境,社会和治理(ESG)主题提供了一个框架。必须对所有受公司可持续性报告指令(CSRD)约束的公司报告12个标准
这些测试证明了操作员能够从很远距离的直升机上控制一架或多架无人机。此次飞行演示于 2024 年 10 月 9 日在欧盟委员会代表的出席下进行,可以测试不断提高的互操作性水平,直至距离 1,000 公里的另一个国家的直升机控制一个国家的无人机及其观察系统。
重复测量结果之间的一致性。它也被定义为单个测试结果的一致性级别(内部测定精度),从一个运行到另一种运行(Inter -inter -inssay Pecision)。通常以测量值的标准偏差和相对标准变化(变异系数或%cv)的特征来表征。
已经开发了国际高级电视和红外观测卫星垂直声音(ATOVS)处理套件(IAPP),以检索来自ATOVS测量结果的大气温度,湿度,大气总臭氧,大气总臭氧和其他参数。检索这些参数的算法包含四个步骤:1)云检测和去除,2)ATOV测量值的偏置调整,3)回归检索过程,以及4)非线性迭代物理检索。九(3 3 3)相邻的高分辨率红外音器(HIRS)/3点观测,以及先进的微波炉响起的单位-A观测值重塑为HIRS/3分辨率,可用于检索温度效果,表面皮肤温度,总大气的冰酮和微层面表面和同样的湿度,表面皮肤温度,总大气的沸腾的表面,以及同样。atovs profle检索结果通过root平方平方的差异来评估反射仪观察条件。在1 km垂直分辨率下温度的检索准确性约为2.0 k,在本研究中,在2 km垂直分辨率下的露点温度为3.0–6.0 K。IAPP现在可供全球用户用于处理实时ATOV数据。
B 类 这是一种预处理试剂,用于使用 AUTOF MS 识别阳性血培养微生物。它与其他临床和诊断程序结合使用,作为早期诊断(例如血流感染)的辅助手段。
讲座在不同时间在线进行,有些在下午,有些在晚上。 一些讲座会被录制下来,学生可以在自己的时间收听。 有关微证书颁发时间的信息将在课程网站上公布。 支持——学生可以联系学生联络官 拟议招生——去年试点项目有 10-15 名学生。预计有 10 到 15 名学生参加该项目。 微证书 80% 由 HEA 资助。 爱尔兰工程师协会将所有微证书视为 CPD 9 级证书为研究生证书 高级文凭为 8 级。寻求 RPL 的学生将获得与 Springboard 类似的方法。部门有内部支持人员来帮助学生申请 RPL。 学生可以报名参加律师资格考试时间表限制的模块数量没有限制。 模块入门课程会介绍在线平台,例如 Moodle / Teams,还会为学生提供一本手册。基于软件的模块内置了出勤元素。 课程
消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
背景:血管内治疗(EVT)被建议作为治疗颅内动脉瘤的优越方式。然而,患有EVT的动脉瘤性蛛网膜下腔出血(ASAH)患者的功能结果较差仍然存在。因此,迫切需要研究风险因素并在此类患者的亚型中开发关键的决策模型。方法:我们从正在进行的注册表队列研究Prosah-MPC中提取了目标变量,该研究是在中国多个中心进行的。我们将这些患者随机分配给培训和验证队列,比为7:3。单变量和多元逻辑回归以找到潜在因素,然后开发了具有优化变量的九个机器学习模型和堆栈集合模型。通过多个指标评估了这些模型的性能,包括接收器操作特征曲线(AUC-ROC)下的区域。我们进一步使用Shapley添加说明(SHAP)方法,基于最佳模型的特征可视化分布。结果:总共招募了226名经历EVT的较差ASAH的合格患者,而89(39.4%)的12个月结果较差。年龄(调整或[AOR],1.08; 95%CI:1.03–1.13; P = 0.002),蛛网膜下腔出血体积(AOR,1.02; 95%CI:1.00-1.05; P = 0.033; P = 0.033; P = 0.033),神经外神经社会级联盟,Wornurosurgical Societies等级(wfns)(W ffns)(w ffns)(w ffns)(w ffns)(2.03)(aor c)(2.03); 1.05–3.93; p = 0.035)和狩猎级别(AOR,2.36; 95%CI:1.13–4.93; p = 0.022)被确定为不良结果的独立风险因素。NCT05738083。然后,开发的预测模型表明,LightGBM算法在验证队列中的AUC-ROC值为0.842,而Shap结果表明年龄是影响功能结果的最重要的风险因素。结论:LightGBM模型在促进患有不良后果风险的贫困级ASAH患者的风险分层方面具有巨大的潜力,从而增强了临床决策过程。试用注册:Prosah-MPC。2022年11月16日注册 - 回顾性注册,https:// clinical trials.gov/study/nct05738083。关键词:颅内动脉瘤,蛛网膜下腔出血,血管内手术,机器学习,预后
Josette Northcott 1 , Gabor Bartha 1 , Jason Harris 1 , Conan Li 1 , Fabio C. P. Navarro 1 , Rachel Marty Pyke 1 , Manqing Hong 1 , Qi Zhang 1 , Shuyuan Ma 1 , Tina X. Chen 1 , Janet Lai 1 , Nitin Udar 1 , Juan-Sebastian Saldivar 1 , Erin Ayash 1 , Joshua Anderson 1,Jiang Li 1,Tiange Cui 1,Tu Le 1,Ruthie Chow 1,Randy Velasco 1,Chris Mallo 1,Rose Santiago 1,Robert C. Bruce 1,Laurie J. Goodman 1,Yi Chen 1,Yi Chen 1,Dan Norton 1,Dan Norton 1,Dan Norton 1,Dan Norton 1,Richard O. Chen 1,2,Richard O. Chen 1,2,John M. Lyle 1,2,3