Gabanintha Vanadium项目是一项提议,旨在通过开放坑开采开发多个钒矿床(北部和中部),其生产和加工速率在23年内每年高达400万吨矿石(MTPA)。该提案位于西澳大利亚州中部地区的Meekatharra 40公里(公里)。该提案的支持者是澳大利亚技术金属有限公司。该提案包括开发矿坑和相关的基础设施,包括废岩地面(WRL),矿化废物库存,加工厂,我的运行,综合废物地图(结合尾矿存储设施),钙化存储区域,矿山脱水厂,脱水设施,工厂,车间,综合场,综合建筑和关联的基础设施和关联的建筑物。提出了两种采矿场景;方案1(分别挖掘北部和中央沉积物)和方案2(在扩展的坑中一起挖掘北部和中央沉积物)。
钒氧化还原液流电池 (VRFB) 电解质在高温 (> 40°C) 下热稳定性不足仍然是该技术开发和商业化的挑战,否则该技术将为间歇性可再生能源的长期储存带来广泛的技术优势。本文提出了一种组合添加剂的新概念,它显著提高了电池的热稳定性,使其能够在迄今为止测试的最高温度 (50°C) 下安全运行。这是通过结合两种化学性质不同的添加剂——无机磷酸铵和聚乙烯吡咯烷酮 (PVP) 表面活性剂实现的,它们共同减缓溶液中氧钒物质的质子化和聚集,从而显着抑制有害沉淀物的形成。具体来说,在 50°C 的静态条件下,沉淀率降低了近 75%。这一改进反映在完整的 VRFB 设备在 50°C 下连续运行超过 300 小时的稳健运行中,在 100 mA cm-2 电流密度下实现了令人印象深刻的 83% 的电压效率,并且在电极/流动框架或电解质槽中均未检测到沉淀。
摘要:本文探讨了经过训练的人工神经网络 (ANN) 在预测钒氧化还原液流电池行为方面的新应用,并将其性能与二维数值模型进行了比较。目的是评估两个 ANN 的能力,一个用于预测电池电位,一个用于预测各种操作条件下的过电位。先前用实验数据验证过的二维模型用于生成数据来训练和测试 ANN。结果表明,第一个 ANN 可以在充电和放电模式下精确预测不同充电状态和电流密度条件下的电池电压。负责过电位计算的第二个 ANN 可以准确预测整个电池域的过电位,在电极膜和域边界等高梯度区域附近的置信度最低。此外,计算时间大幅减少,使 ANN 成为快速理解和优化 VRFB 的合适选择。
电解质不平衡是钒氧化还原流量电池容量损失的主要原因。已广泛报道,通过混合电解质可以很容易地恢复由钒跨界引起的不平衡,而由电解质的净氧化引起的不平衡只能通过更复杂的化学或电化学方法来恢复。目前,两种类型的不平衡对电池容量的关节效应仍然尚不清楚。为了克服这一限制,考虑两种类型的失衡的普遍负荷状态和健康指标。随后,对电池容量如何取决于电解质不平衡的详尽分析。由于此分析,突出了两个特定结果。首先,结果表明,在某些不平衡条件下,标准电解质混合可能会适得其反,从而进一步降低了电池容量而不是增加电池的容量。其次,证明可以通过诱导系统中最佳的质量不平衡来减轻氧化引起的大部分容量损失。因此,通过计算机仿真提出并验证了跟踪此最佳的系统过程。
本演示文稿包含适用证券法的前瞻性信息,出于申请加拿大证券立法(“前瞻性陈述”),其中一些可能被视为“财务前景”。本演示文稿中的前瞻性陈述包括但不限于以下方面的陈述:对物理钒,VFB和固定能量存储的需求不断上升;任何租金付款的充分性,以充分抵消行政和公司支出;关于钒的供应,生产和消费的预测,包括钒供应不足的可能性以及进入市场的新钒供应商的概率和影响的可能性;绿色计划的影响,包括但不限于脱碳和新经济用例以及基础设施支出对钒的需求;基于钒的锂离子电池技术改进的影响;以有利的方式分配运营成本的能力;与VAND可接受的条款,与VFB客户合同的租赁钒合同;一般而言,有足够的投资者对直接暴露于物理钒的直接暴露兴趣; Vand能够在此处设置的条款中签订关键协议;成功销售和吸引Vand投资的能力;获得必要的证券交易所批准;钒租赁合同对VFB成本的影响; VAND对钒市场流动性的影响;
物理学副教授 - 米兰 - 比科卡大学材料科学系(意大利)时期:2022年12月 - 现任“纳米级动力学超快显微镜实验室”的主要研究员(Luminad)。欧盟资助的FET-OPEN项目智能电子(GAn。964591)的科学协调员 - www.smartelectron.eu。物理助理教授 - 米兰 - 比科卡大学材料科学系(意大利)期间:2019年12月至2022年11月,“纳米级动力学超快显微镜实验室”(Luminad)的首席研究员。欧盟资助的FET-OPEN项目智能电子(GAn。964591)的科学协调员 - www.smartelectron.eu。科学家 - ÉcolePolytechniquefédédéralede Lausanne(瑞士)时期:2016年2月至2019年11月;顾问:Fabrizio Carbone教授。超快电子衍射,显微镜和光谱实验在Lumes实验室进行的。任命由玛丽·斯克洛多夫斯卡·居里(Marie Sklodowska-Curie)共同创立的EPFL奖学金计划部分支持(H2020 - MSCA - Cofund 2016,GAN。665667)。博士后研究学者 - 加利福尼亚理工学院(美国)期间:2011年11月至2016年1月;顾问:Ahmed H. Zewail教授(诺贝尔·劳拉(Nobel Laurate in Chemistry) - 1999年)。研究活动的重点是研究纳米材料中原子级超快现象的性质。M.Sc. 在法国萨克莱(法国)法国原子能委员会(法国)期间实习:2007年3月至2007年9月;顾问:尼古拉斯·巴雷特博士。 研究相关钙钛矿材料的表面特性。M.Sc.在法国萨克莱(法国)法国原子能委员会(法国)期间实习:2007年3月至2007年9月;顾问:尼古拉斯·巴雷特博士。 研究相关钙钛矿材料的表面特性。在法国萨克莱(法国)法国原子能委员会(法国)期间实习:2007年3月至2007年9月;顾问:尼古拉斯·巴雷特博士。研究相关钙钛矿材料的表面特性。在FP6 Incems欧洲项目的框架内支持我的任命。教学经验
挑战:VRFB 的运行效率不仅取决于其电气状态,还取决于其热状态。VRFB 独特的双重用途创造了一个新的三维优化问题陈述,其中 EMS 必须在操作量中找到最佳操作点,其中混合存储系统不仅在电气方面进行了优化,而且 VRFB 也在热方面进行了优化,如上图所示。
摘要 电池和超级电容器已成为下一代储能技术的有希望的候选者。新型二维 (2D) 电极材料的快速发展预示着储能设备新时代的到来。MXenes 是一种新型的层状二维过渡金属碳化物、氮化物或碳氮化物,由于其优异的电导率、电化学和亲水性能、大的表面积和吸引人的拓扑结构而备受关注。本综述重点介绍了使用和不使用蚀刻剂(如氢氟酸、氟化锂和盐酸)去除 MAX 相的“A”层来制备碳化钒 MXenes 的各种合成方法。目标是展示利用毒性较小的蚀刻方法来实现与传统方法制备的 MXenes 具有可比性能的 MXenes。本综述还讨论了插层对 MXene 层之间高层间距的影响以及 MXenes 作为超级电容器和电池电极的性能。最后,讨论了目前对碳化钒 MXenes 在合成、可扩展性和在更多储能设备中的应用方面的知识存在的差距。
有关相关广告的注释:我们收集有关您在本网站上使用的内容(包括广告)的信息,并使用它使广告和内容在我们的网络和其他网站上更与您相关。详细介绍了我们的政策和您的选择,包括如何选择退出。有时我们的文章将尝试以合适的价格帮助您找到合适的产品。,我们可能会从第三方收到发布此内容的付款,或者当您通过我们网站上的链接进行购买时。
ABSTRACT By tailoring the coordination sphere of va- nadium to accommodate a 7-coordinate geometry, a highly soluble (>1.3 M) and reducing (−1.2 V vs Ag/AgCl ) flow battery electrolyte is generated from [V(DTPA)] 2−/3− (DTPA = diethylenetriaminepentaace- tate).散装光谱电化学均在原位上进行评估氧化和还原状态的材料特性。流动电池在接近中性的pH条件下组装,并以12.5 wh -1的排放能密度和高效率组装。此外,生成了使用相同的氨基羧酸盐配体进行两个电解质的第一个Che含量的流量电池。所呈现的电池表现出与铁量式和全瓦纳族流动电池相当的性能,同时使钒的有效排放能量(WH摩尔V WH)加倍,并最大程度地降低安全性和操作风险,并具有网格规模的存储储能替代方案。