然而,V x o y阴极的商业应用仍然受到限制,主要是因为该材料是在其充电状态下合成的(即没有互插离子的来源:LI,Na,Zn和Mg)和毒性。为了解决以前的化学插入,已经研究了将离子源插入V x o宿主材料中,包括Li X-,Na X-,Zn X - 和Mg X -V Y O Z。[24–30]插量离子不仅充当层中的支柱,以防止结构变形,而且还增加了层中离子源的量。先前的评论论文全面报道了基于V X O Y的材料的特征,并总结了其作为在LIBS,NIBS,ZIB和MIBS中用作阴极的电化学性能。[12,13,25,26]然而,要详细了解储能机制是很有吸引力的,因为它们在充电和电荷过程中监测实时反应,因此详细了解储能机制是有吸引力的。在这里,“原位”是指“在现场或反应物内部”,而“ Operando”是指“在工作或操作条件下”,但是这些术语通常在文献中互换。更普遍地说,“原位/操作分析”用于描述实时电化学操作下的电化学分析。[31–34]
钢渣是炼钢过程的副产品。由于钢渣生成率高,且其中含有大量有毒而有价值的金属,如钒,因此从该产品中回收钒是十分必要的。在本研究中,将炼钢转炉渣(含约1.96wt.% V 2 O 5 )磨碎至平均粒度为85µm,采用乙酸浸出法回收钒。在固定乙酸浓度(1摩尔)和固液重量比(200毫升中1克钢渣)的情况下,研究了时间(0至120分钟范围内)和温度(0至80⁰C范围内)对浸出过程的影响。结果表明,增加时间和降低温度(活化能等于-11.4kJ/mol)可提高钒的浸出效率。在 0 ⁰ C 和 90 分钟时达到最大浸出效率。动力学研究表明,通过固体层的热量扩散是钒在乙酸中溶解的控制步骤。此外,热导率 (ka) 随温度升高而降低 (ka=21877.6/T3),因此热量以较慢的速度从反应区转移到颗粒表面。
摘要——本文提出了一种优化钒液流电池 (VRFB) 能量容量恢复的新算法。VRFB 技术可以通过电解质再平衡部分恢复损失的容量来延长其使用寿命。我们的算法找到了这些再平衡服务的最佳“数量”和“时间”,以最小化服务成本,同时最大化能源套利收益。我们表明,该问题的线性化形式可以解析解决,并且目标函数是凸的。为了解决整个问题,我们开发了一种两步混合整数线性规划 (MILP) 算法,该算法首先找到最佳服务数量的界限,然后优化服务的数量和时间。然后,我们针对纽约 ISO 的能源套利案例研究给出了理论分析和优化结果。
建筑环境是温室气体排放的主要来源,消耗了大量的可用能源和自然资源。1-3 联合国估计,全世界建筑物的能源消耗占全球能源总消耗量的 30-40%,相当于每年 25 亿吨石油当量 (Mtoe);尽管可持续建筑实践有所改善,但随着城市化进程的加快,预计建筑能耗将急剧上升。建筑物的建造和运营消耗了全球总水资源的 16%、总采伐木材(原木)供应量的 25% 和总骨料供应量(原石、沙子和砾石供应量)的 40%,从而大大消耗了自然资源的生态系统。4,5 近期,许多努力都集中在减少建筑环境在建造、运营和报废处置或再利用/回收过程中的碳足迹。可以说,与这一努力相关的一个内在困难是同时降低体现能源和运营能源的价值,这往往会产生相反的效果
近年来,超级电容器 (SC) 是用于清洁能源前景的新兴技术之一。更高的功率密度、更低的比能、更长的循环寿命和环境友好性使超级电容器比传统电池更胜一筹。然而,科学界正致力于通过寻找合适的电极材料来提高超级电容器的比能。据报道,碳材料、导电聚合物和金属氧化物或氢氧化物是适合超级电容器电极的候选材料 [1-3]。活性炭、碳纳米管和石墨烯等碳材料具有出色的电导率和化学稳定性 [4],然而,它们的电荷存储容量窄,能量密度相对较低 [1]。另一方面,导电聚合物是伪电容器的不错选择 [3]。然而,导电聚合物的电化学稳定性较差。为此,过渡金属氧化物 (TMO) 因其多种氧化态和快速的氧化还原动力学而成为替代候选材料 [2,5-7]。在其他 TMO [8-10] 中,氧化钒因其成本低、价态多样、来源丰富而受到广泛关注[11-
氧化还原液流电池 (RFB) 是一种电化学液流系统,将能量存储在可溶性氧化还原对中,通常允许分离存储容量和功率输出。能量以包含氧化还原系统的两种液体介质的形式存储。这些液体被泵送通过电池,在那里发生电化学转换。RFB 的一个有趣特征是容量和功率的独立可扩展性。1 因此,如果需要存储更多能量,则不需要更大的电极,而传统电池则需要这样做,因为传统电池的能量存储和转换并不分离。这使得 RFB 对于需要存储大量能量但对最大功率的要求适中的大规模存储应用特别有趣。最重要的 RFB 类型是基于钒的(氧化还原系统 V 2 + /V 3 + 在一侧,V 4 + /V 5 + 在另一侧)。参考文献 2、3 中报告了 RFB 技术的详细描述。详细示意图可在参考文献 4 中找到。
作者的完整清单:麦卡锡,艾莉森; SUNY Stony Brook,Karthik材料科学和化学工程Mayilvahanan; Mikaela哥伦比亚大学Dunkin;斯托尼·布鲁克大学国王,史蒂文;加尔文的斯托尼·布鲁克大学quilty;丽莎化学库尔赫尔·布鲁克大学(Stony Brook University);斯托尼·布鲁克大学Kuang,杰森;肯尼斯的Stony Brook University Takeuchi;斯托尼·布鲁克大学(Stony Brook University),化学Takeuchi,以斯帖(Esther);艾伦(Alan)西部布鲁克大学(Stony Brook University); Lei哥伦比亚大学王;布鲁克黑文国家实验室,能源和光子科学Marschilok,艾米;石溪大学
1 华盛顿大学物理系,华盛顿州西雅图 98195-1560,美国 2 太平洋西北国家实验室环境分子科学实验室,华盛顿州里奇兰 99354,美国 3 纽约州立大学宾汉姆顿大学物理系,纽约州宾汉姆顿 13850,美国 4 纽约州立大学宾汉姆顿大学材料科学与工程系,纽约州宾汉姆顿 13850,美国 5 纽约州立大学宾汉姆顿大学东北化学能存储中心,纽约州宾汉姆顿 13850,美国 6 阿贡国家实验室化学科学与工程部,伊利诺伊州莱蒙特 60439,美国 摘要 我们报告了电化学序列 ε-VOPO 4 、ε-LiVOPO 4 、 ε-Li 2 VOPO 4 和参考氧化物 V 2 O 3 、VO 2 和 V 2 O 5 。在对这些结果的分析中,我们建立了一个研究化学键的框架,该框架通常适用于广泛的系统,包括复杂的扩展无机化合物。虽然后一种方式在许多优秀的催化研究中的应用不如金属酶等,但我们表明该技术在以材料为中心的储能研究中具有很高的实用性。这里详细讨论了对局部原子结构和杂化方案的敏感性。同样,锂化对氧化、离域和配体价能级偏移的影响在分析结果中都很明显。最后,TDDFT 投影清楚地揭示了每个钒位点价带的方向依赖性。我们的结果表明,实验室 X 射线光谱仪器是获得 3d 过渡金属无机化合物的良好分辨率 VTC-XES 特征的可行途径,即使对于数量有限或对大气敏感的样品也是如此。实验结果与实空间格林函数和时间相关密度泛函理论 (TDDFT) 方法分别产生的结果非常一致。因此,我们提出,如果配备适当的理论支持,VTC-XES 可以成为 X 射线吸收前边缘特征的宝贵补充,以更详细地表征化合物的电子结构。我们预计类似的分析将在广泛的材料化学研究中得到应用,并提供基础和应用见解。(ж)evan.jahrman@nist.gov - 作者目前在马里兰州盖瑟斯堡的国家标准与技术研究所工作;(†)niri.govind@pnnl.gov;(‡)seidler@uw.edu
摘要 钒液流电池因其独特的优势而日益被视为储存大量能量的最有趣的选择之一。它们的发展和未来的传播在很大程度上取决于对新材料的研究以及技术的发展,也取决于是否有合适的模型,以便在运行条件下对其进行真实的模拟。尽管关于小型设备或单个电池的这些主题的文献很多,但关于围绕多电池堆构建的大型钒液流电池系统的技术、建模和仿真的研究报告却很少。本文介绍了一个工业规模的 9 kW 系统,以及它在现实条件下的建模、验证和运行模拟。特别是,提出了一个完整的动态模型,能够模拟待机(即没有电源和反应物流动)和运行条件下的热行为。通过将计算数据与实验测量值进行比较来验证所提出的模型。关键词 液流电池、多物理模型、热模型、内部损耗、分流电流