摘要 最近的研究越来越多地集中在相对论运动对量子相干性的影响上。先前的研究主要检查相对运动对基相关的量子相干性的影响,强调其在加速条件下易受退相干的影响。然而,相对论运动对基独立的量子相干性的影响仍然是一个有趣的悬而未决的问题,而这对于理解系统的内在量子特征至关重要。本文通过研究总相干性、集体相干性和局部相干性如何受到加速度和耦合强度的影响来解决这个问题。我们的分析表明,总相干性和集体相干性都会随着加速度和耦合强度的增加而显著降低,最终在高加速度水平下消失。这强调了 Unruh 热噪声的巨大影响。相反,局部相干性表现出相对稳定性,只有在无限加速度的极端条件下才会降至零。此外,我们证明了集体、局部和基独立相干性共同满足三角不等式。这些发现对于增强我们对高加速环境下量子信息动力学的理解至关重要,并为相对论条件下量子相干性的行为提供了宝贵的见解。
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
摘要 - 量子状态之间的歧视是量子信息理论中的一项基本任务。给定两个量子状态ρ +和ρ-,HELSTROM的测量区分它们的误差概率最小。然而,发现和实现HELSTROM测量值对许多量子位上的量子状态可能具有挑战性。由于这种困难,人们对识别接近最佳的局部测量方案非常有兴趣。在这项工作的第一部分中,我们概括了Acin等人的先前工作。(物理。修订版A 71,032338),并证明使用贝叶斯更新的本地贪婪(LG)方案可以最佳区分任何两个可以写成任意纯状态的张量产物的状态。然后,我们表明,相同的算法无法以消失的误差概率(即使在较大的子系统限制中)区分混合状态的张量产物,并引入了一种局部刺激(MLG)方案,并严格效果更好。在这项工作的第二部分中,我们将这些简单的本地方案与一般动态编程(DP)方法进行比较。DP方法发现了一系列最佳的局部测量和子系统测量的最佳顺序,以区分两个张量产生状态。1
摘要。相位模型(例如Allen-CaHn方程)可能会引起几何形状的形成和演变,这种现象可以在适当的缩放方案中进行严格分析。在其尖锐的界限限制下,已经猜想了具有n 3不同最小值的电势的矢量allen-cahn方程,以通过多相平均曲率流量来描述分支接口的演变。在目前的工作中,我们在两个和三个环境维度和适当的一类潜在的情况下给出了严格的证据:只要存在多态度平均曲率流的强大解决方案,就可以解决矢量allen-cahn方程,并具有良好的初始数据汇总到多型固定固定构型固定端口的限制范围内的范围范围范围的弯曲范围范围范围的范围,我们甚至建立了收敛速度。”1 = 2 /。我们的方法基于Allen-Cahn方程的梯度流结构及其限制运动:基于用于多相平均曲率流的最新概念“梯度流校准”的概念,我们引入了矢量allen – Cahn方程的相对熵的概念。这使我们能够克服其他方法的局限性,例如避免需要对艾伦 - 卡纳操作员进行稳定性分析,或在积极时为能量的其他收敛假设。
摘要 - 在有镜的物理学的背景下开发的调整网络试图近似阶列量 - 自由度降低,而自由度降低,仅在n中仅是多项式的,并作为部分合成的较小张量的网络排列。正如我们最近在量子多体物理学的背景下所证明的那样,通过对此类网络中张量的规范多核(CP)等级对张力的构成施加约束,可以进一步降低计算成本[ARXIV:2205.15296]。在这里,我们演示了如何在机器学习中使用具有CP等级约束和张量液位的树张量网络(TTN)。该方法在时尚 - mnist图像分类中的表现优于其他基于张量的基于网络的方法。分支比b = 4的低级TTN分类器达到90.3%的测试集精度,计算成本低。主要由线性元素组成,张量网络分类器避免了深度神经网络的消失梯度问题。CP等级约束具有额外的优点:可以更自由地减少参数的数量,以控制过度拟合,改善概括属性并降低计算成本。他们允许我们使用具有较高分支比率的树木,从而大大提高了表示能力。
非正交量子态鉴别 (QSD) 在量子信息和量子通信中起着重要作用。此外,与厄米量子系统相比,宇称时间 (PT) 对称非厄米量子系统表现出新现象并引起了广泛关注。在这里,我们通过有损线性光学装置中量子态在 PT 对称哈密顿量下演化,实验证明了 PT 对称系统中的 QSD(即 PT 对称 QSD)。我们观察到两个最初非正交的状态可以快速演化为正交状态,并且只要哈密顿量的矩阵元素变得足够大,所需的演化时间甚至可以为零。我们还观察到这种鉴别的代价是量子态消散到环境中。此外,通过将 PT 对称 QSD 与厄米系统中的最优策略进行比较,我们发现在临界值下,PT 对称 QSD 等同于厄米系统中的最佳明确状态鉴别。我们还将PT对称量子态散射推广到区分三个非正交态的情况。PT对称系统中的量子态散射为量子态区分打开了一扇新的大门,在量子计算、量子密码和量子通信中有着重要的应用。
我们介绍并分析了扩展的哈伯德模型,其中,在一个方形的晶格上,在半频段填充的方形晶格上,考虑了地点库仑相互作用以及交错的局部电势(SLP)。使用Hartree-fock近似以及Kotliar和Ruckenstein Slave Boson形式主义,我们表明该模型在SLP的有限值下使用电荷订单(CO)以及联合旋转和电荷调制(SCO),而旋转密度波(SDW)仅稳定下来,以用于旋转SLP。我们确定其相位边界以及依赖SLP的顺序参数的变化,以及现场和最近的邻居相互作用。CO和SCO相共存的域,适用于电阻开关实验。我们表明,当采取零-SLP限制时,新型的SCO会系统地变成更常规的SDW相。我们还讨论了在零和有限温度下不同相变的性质。在前一种情况下,没有连续CO到SDW(或SCO)过渡。相反,顺磁性相(PM)伴随着朝向自旋或电荷有序相的连续相变,位于有限温度下。证明了与数值模拟的良好定量一致性,并进行了两种使用方法之间的比较。
我们讨论了近似量子纠错码系列,它们作为某些由非交换项组成的量子多体哈密顿量的近简并基态出现。对于精确码,纠错条件可以用低温热场双态中双边互信息的消失来表示。我们考虑了近似码的距离概念,该概念通过要求这种互信息很小而获得,并且我们评估了 SYK 模型和一族低秩 SYK 模型的这种互信息。在外推到接近零温度后,我们发现这两种模型都产生了具有恒定速率的费米子码,因为费米子的数量 N 趋于无穷大。对于 SYK,距离按 N 1 / 2 缩放,对于低秩 SYK,距离可以任意接近线性缩放,例如 N . 99,同时保持恒定速率。我们还考虑了无低能平凡状态性质的类似物,我们将其称为无低能绝热可及状态性质,并表明这些模型确实具有可以在与系统大小 N 不成比例的时间内绝热制备的低能状态。我们讨论了这些代码的全息模型,其中较大的代码距离是由于在一个简单的量子引力模型中出现了长虫洞几何。
摘要准确的充电状态(SOC)估计取决于精确的电池模型。非线性和不稳定干扰因素的影响使准确的SOC估计变得困难。为了获得准确的电池模型,提出了基于NARX(具有外源输入的非线性自回归网络)的方法,提出了复发性神经网络和移动窗口方法。本文从以下三个方面提高了SOC估计的准确性,建模速度和鲁棒性。首先,为了克服对模型训练过程中数据量的过度依赖,使用NARX复发性神经网络来建立电池模型。narx(具有外部输入的非线性自回旋)具有延迟和反馈功能的复发性神经网络可以保留上一刻的输入和输出,并将其添加到下一个时刻的计算中。因此,使用少量数据实现了更好的估计结果;其次,移动窗口方法用于梯度爆炸和NARX模型训练过程中可能发生的梯度消失。第三,通过将其与不同的工作条件和不同温度下的其他方法进行比较,可以验证该模型的有效性。结果表明,所提出的模型具有更高的SOC估计准确性和速度。提出的模型的RMSE性能减少了约65%,并且执行时间缩短了约50%。
摘要:基于应变的带结构工程是一种强大的工具,可以调整半导体纳米结构的光学和电子特性。我们表明,我们可以调整INGAAS半导体量子井的带结构,并通过将其整合到卷起的异质结构中并改变其几何形成,从而改变发光的光线。来自光致发光和光致发光激发光谱的实验结果表明,由于重孔在卷起的Ingaas量子井中的轻孔状态与轻孔的反转,价带状态的强型能量转移与结构相比具有强大的能量转移。带状态的反转和混合会导致滚动量子井的光学选择规则发生强烈的变化,这些量子井也显示出传导带中消失的自旋极化,即使在近乎谐振的激发条件下也是如此。的频带结构计算以了解电子过渡的变化,并预测给定几何构造的发射和吸收光谱。实验与理论之间的比较表明了一个极好的一致性。这些观察到的基本属性的深刻变化可以作为开发量子信息技术新颖的光学设备的战略途径。关键字:频带结构反演,半导体量子井,光学选择规则,滚动微管,拉伸和压缩混合状态,弯曲的半导体膜■简介
