摘要:基于真空的蒸气沉积过程合成胶片和涂料,可以调整微观结构和组成,以获得良好的控制功能和多功能特性,结合了机械,摩擦学,电子化学,光学,光学,光学,电气,电气和其他属性的机械性能,以及其他覆盖的系统效果,以及均匀的覆盖系统。本演讲将描述一种对功能涂层和表面工程的整体方法,该方法依赖于对最终性能的材料,过程和微观结构之间相互作用的深入了解。In the first part, we will provide a brief overview of the advances in film fabrication technologies employing physical vapor deposition (PVD, in particular, magnetron sputtering including HiPIMS, and vacuum arc deposition) and chemical vapor deposition (CVD, in particular, plasma enhanced CVD (PECVD), and atomic layer deposition (ALD)), with a particular emphasis on the understanding of能量表面相互作用,用于控制纳米级涂层微结构的演变。在第二部分中,我们将通过特定的例子和案例研究来说明在航空航天和外层空间应用开发实用涂料方面的挑战,进度和新机会,并考虑了飞机和卫星的不同组成部分。选定的示例将包括:
Target material deposited as vapor onto ceramic or metal target substrate Targets loaded in the neutron tubes Neutron tubes then attached to glass manifold vacuum system under exhaust hood Once the system reached vacuum, storage beds were heated to flood the system with deuterium or tritium gas A torch was used to melt the glass manifold connection, seal the neutron tubes, and cut them free of the歧管
3.18.1 Introduction to MEMS Atomic Clocks 572 3.18.1.1 Introduction 572 3.18.1.2 Vapor Cell Atomic Clocks 573 3.18.1.3 Coherent Population Trapping 575 3.18.1.4 CPT in Small Vapor Cells 577 3.18.2 Design and Fabrication 578 3.18.2.1 Introduction 578 3.18.2.2 Physics Package 579 3.18.2.2.1简介579 3.18.2.2.2垂直腔表面发射激光580 3.18.2.2.3蒸汽单元581 3.18.2.2.4光学584 3.18.2.2.2.5加热585 3.18.2.2.2.2.2.2.2.2.2.2.2.2.2.2 CSAC 588 3.18.2.3.3其他MEMS共振器588 3.18.2.4控制电子设备590 3.18.2.5包装591 3.18.3性能592 3.18.3.1简介592 3.18.3.2频率稳定592 3.18.3.2.2-2.2.2.2.2.2.3.3.1.2.5频率592 3.18.1.长期频率稳定性595 3.18.3.3功耗596 3.18.3.4尺寸597 3.18.4高级技术597 3.18.4.1简介597 3.18.4.2共振对比597 3.18.4.4.4.4 Introduction 600 3.18.5.2 End-State CSAC 600 3.18.5.3 Nanomechanically Regulated CSAC 601 3.18.5.4 CPT Maser 601 3.18.5.5 Raman Oscillator 601 3.18.5.6 Ramsey-Type CPT Interrogation 602 3.18.5.7 N-Resonances 602 3.18.5.8 Others 603 3.18.6 Other MEMS Atomic Sensors 603参考文献605
4。为什么在大气中与水蒸气有关的科学家不是气候变化的原因?水蒸气是大气中最丰富的温室气体。但是,在整个历史上,水蒸气水平一直保持相对恒定,因此似乎增加的水蒸气是导致气候变化的原因。
您可以使用AMS做什么?•提取精确的材料特性,包括工作功能,光谱,电离电位,带盖等。• Model physical processes based on large scale atomistic simulations of sputtering, etching, and chemical vapor deposition • Study the mechanical properties of materials with automatic workflows for Young's modulus, yield point, Poisson's ratio, and tribology calculations • Discover new materials with M3GNET , the new universal machine learning potential • Create novel ReaxFF or DFTB parameter sets that suits your needs with ParAMS
您可以使用AMS做什么?•提取精确的材料特性,包括工作功能,光谱,电离电位,带盖等。• Model physical processes based on large scale atomistic simulations of sputtering, etching, and chemical vapor deposition • Study the mechanical properties of materials with automatic workflows for Young's modulus, yield point, Poisson's ratio, and tribology calculations • Discover new materials with M3GNET , the new universal machine learning potential • Create novel ReaxFF or DFTB parameter sets that suits your needs with ParAMS
在某些环境条件、温度和蒸汽浓度下会着火。易燃液体蒸汽“着火”的温度称为闪点。当燃料蒸汽达到称为下燃极限 (LFL) 或下爆炸极限 (LEL) 的水平时,蒸汽浓度就会达到危险水平。这些限制通常以体积百分比表示。低于 LFL / LEL(下燃极限 / 下爆炸极限)的燃料被认为太弱而无法燃烧。如果燃料蒸汽浓度超过上燃极限或上爆炸极限,则燃料被认为太浓而无法燃烧。这两个极限之间的燃料蒸汽浓度被认为处于其可燃范围内,它会在与点火源接触时点燃并燃烧。控制不必要的火灾和爆炸的最佳方法之一是将燃料蒸汽浓度保持在 LFL / LEL(可燃性下限 / 爆炸性下限)以下,从而防止其达到可燃性范围 [6], [7]。
在本文中,我们表明,由于蒸发效应,通过无颗粒墨水的等离子体转化制备的银 (Ag) 结构的表面形貌可由溶剂控制。我们使用了三种基于乙二醇的溶剂系列来系统地改变墨水的蒸气压。喷墨打印之后,通过暴露于低压、低温射频 (RF) 等离子体来转化薄膜。Ag 薄膜的扫描电子显微镜 (SEM) 和轮廓测定法表明,表面粗糙度和孔隙率取决于墨水溶剂的蒸气压,并且随着蒸气压的降低而增大。由于孔隙率的变化,电阻率随着溶剂蒸气压的降低而增大。为了证明金属印刷技术对粗糙多孔薄膜的效用,我们使用由三种基于乙二醇的溶剂组成的墨水制作了基于 Ag 的过氧化氢 (H 2 O 2 ) 传感器。发现这些传感器的灵敏度与表面粗糙度和孔隙率有关,而这又与溶剂的蒸汽压有关。
蒸气产物是指采用加热元件,电源,电子电路或其他电子,化学或机械手段的任何不可抑制的产品,无论形状或尺寸如何,可用于从尼古丁或其他形式或其他形式的其他物质中产生蒸气或气雾。这种术语蒸气产品应包括但不限于任何电子烟,电子雪茄,电子雪茄,电子管,电子管或类似产品或类似产品,以及任何蒸气或气溶胶弹药筒或其他尼古丁或其他物质或其他形式的尼古丁或其他物质的容器,包括,包括,包括(但不限于电子,涉及电子烟)的电子,包括电子,涉及电子,涉及电子,涉及电子,零件或烟雾,该烟灰于电子,零件或烟雾,该设备的一部分,零件或烟雾,该烟雾是一种电子,零件或互动的烟灰雪茄,电子管或类似产品或设备。
湿度是空气中的水蒸气量。如果空气中有很多水蒸气,则湿度将很高。湿度越高,外面感觉越湿。相对湿度是实际上空气中的水蒸气的量,其表示为空气可以在相同温度下容纳的最大水蒸气量的百分比。在寒冷的-10摄氏度(华氏14度)上考虑空气。在该温度下,空气最多可以容纳每立方米的2.2克水。因此,如果摄入-10摄氏度时,每立方米有2.2克水,我们的相对湿度很不舒服。如果在-10摄氏度的空气中有1.1克水,我们的相对湿度为50%。
