确保能够满足预期要求的令人满意的综合国家导航系统,联邦航空管理局 (FAA) 正在就从现在到 1995 年可能采用的导航概念方案进行战略研究和规划。战略
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
结构变异(SV)是重大的基因组改变,在包括癌症在内的遗传多样性,进化和各种疾病中起着至关重要的作用。检测SVS的传统方法通常在计算效率,准确性和可扩展性方面面临挑战,尤其是在处理大型基因组数据时。近年来,图形处理单元(GPU)和机器学习(ML)的出现已经开发了解决这些挑战的新途径。本文探讨了GPU加速度和ML技术的整合,以增强结构变体的检测和分析。我们提出了一个全面的框架,该框架利用深度学习模型(用于在GPU上并行处理)以高精度实现实时SV检测。我们的方法不仅减轻了计算负担,而且还提高了与常规方法相比,SV检测的敏感性和特异性。通过在各种基因组数据集上进行广泛的基准测试,我们在速度,准确性和可扩展性方面证明了我们的GPU加速ML框架的出色性能。这些发现强调了将GPU和ML技术相结合以革新基因组研究的潜力,并为在临床和研究环境中更有效,更精确的结构变体分析铺平道路。
动物在其胃肠道中拥有复杂的细菌群落,它们与之共享相互作用。这些对宿主的相互作用赠款的众多影响包括对免疫系统的调节,防御病原体入侵的防御,原本无法消化的食物的消化以及对宿主行为IOR的影响。暴露于压力源,例如环境污染,寄生虫和/或捕食者,可以改变肠道微生物组的组成部分,可能影响宿主 - 微生物组相互作用,这些相互作用可以在宿主中表现出来,例如代谢功能障碍或炎症。然而,很少检查野生动物伴侣中肠道微生物群的变化。因此,我们量化了野生银行是否居住在污染环境中,存在环境放射性核素的区域是否表现出肠道微生物群的变化(使用16S扩增子测序)以及使用转录组学的组合方法在宿主健康中发生变化,并使用转录组学的组合方法,组织学构成组织的组织学分析,对短篇小说和较短的细胞酸性酸性酸性酸性酸性酸性酸性酸性酸性。与居住在受污染区域的动物中肠道微生物群发生变化的同时,我们发现宿主中肠道健康不良的证据,例如杯状细胞降低,可能会削弱
在离线模仿学习(IL)中,代理商旨在学习最佳的专家行为政策,而无需其他在线环境互动。但是,在许多现实情况下,例如机器人操纵,脱机数据集是从次优行为中收集的,没有奖励。由于稀缺的专家数据,这些代理通常会简单地记住较差的轨迹,并且容易受到环境变化的影响,因此缺乏对新环境推广的能力。要自动生成高质量的专家数据并提高代理的概括能力,我们提出了一个名为ffline i的框架,即通过进行反事实推断,并使用c oferfactual数据a u摄量(oilca)。尤其是我们利用可识别的变异自动编码器来生成反事实样本以进行专家数据增强。我们理论上分析了生成的专家数据的影响和概括的改进。此外,我们进行了广泛的实验,以证明我们的方法在两个d eep m ind c introl s uite基准测试基准上的分布性能和c ausal w orld w orld w orld w orld w orld w orld w orld基准的表现显着超过了各种基准。
本文对海浪能驱动的反渗透进行了分析。市售的海水淡化系统通过 DC/AC 转换器连接到可变 DC 电源,并改变输入电压以模拟可再生能源系统的响应。具体而言,使用了 2015 年肯尼亚基利海的波浪数据。波浪资源变化会导致波浪能转换器的估计功率输出以及波浪能驱动的海水淡化系统的估计淡水产量发生变化。对于基利海,研究了最多三个用于海水淡化的波浪能转换器。此外,还提出了一种包括太阳能和波浪能的混合系统。实验表明,反渗透海水淡化系统可以在低于额定值的功率水平下运行,但淡水流量较低。结论是,波浪能或波浪能与光伏系统相结合,可被视为海水淡化的电源,带或不带电池储存。
超分辨率医学图像可帮助医生提供更准确的诊断。在许多情况下,计算机断层扫描 (CT) 或磁共振成像 (MRI) 技术在一次检查期间会捕获多个扫描 (模式),这些扫描 (模式) 可以联合使用 (以多模态方式) 来进一步提高超分辨率结果的质量。为此,我们提出了一种新颖的多模态多头卷积注意模块来超分辨率 CT 和 MRI 扫描。我们的注意模块使用卷积运算对多个连接的输入张量执行联合空间通道注意,其中核 (感受野) 大小控制空间注意的减少率,卷积滤波器的数量控制通道注意的减少率。我们引入了多个注意头,每个头具有不同的感受野大小,对应于空间注意的特定减少率。我们将多模态多头卷积注意力 (MMHCA) 集成到两个深度神经架构中以实现超分辨率,并对三个数据集进行了实验。我们的实证结果表明,我们的注意力模块优于超分辨率中使用的最先进的注意力机制。此外,我们进行了一项消融研究,以评估注意力模块中涉及的组件的影响,例如输入的数量或头部的数量。我们的代码可在 https://github.com/lilygeorgescu/MHCA 免费获取。
设计:国家 薪资 等级 资格/经验 1 高级项目 54000-博士+3 年经验或硕士学位工程师/科学家工程/科学/设计/人文学科 1,00,000+6 年经验 2 项目工程师/47000-65500 工程博士或硕士学位/科学家/博士后科学/设计/人文学科+3 年口头研究员/经验或研究工程/设计学士学位+6 年经验助理 3 助理项目 35000-49000 工程/科学/工程师/设计/人文学科硕士学位或工程/设计学士学位科学家 + 2 年经验 4 助理项目 25000-42000 工程/设计学士学位工程师或科学/人文学科硕士学位 5 助理项目 21000-32000 科学/人文学科学士学位科学家 6 高级项目 20000-25000 工程学文凭 + 2 年经验,技术员 ITI 证书 + 5 年经验。 7 实验室技术员 16000-20000 12 级及格或高中 + 2 年实习。 8 实验室服务员 15800 10 级及格 9 JRF (GATE) 37000 + HRA BE/B.Tech。工程/科学/设计/人文学科硕士学位 + GATE 或同等考试成绩 10 JRF 25000 + HRA BE/B. Tech,工程/科学/设计/人文学科硕士学位 11. SRF 42000 + HRA BE/B.Tech 或工程/科学/设计/人文学科硕士学位 + 2 年研究经验。•
摘要 电池组既表现出固有的电池间差异,也表现出温度和其他应力因素的时空差异,从而影响电池退化路径的演变。为了解释这些变化和退化或电池扩散的差异,我们提出了一种利用 3 参数非齐次伽马过程对锂离子电池退化进行建模的方法。该方法可预测任何电池架构的容量衰减或故障时间,并使用加速因子调整电池拟合退化数据的分布。在电池组级别,使用并联和串联配置的伽马分布变量组合对电池进行建模。将不同热条件下的容量衰减或故障时间的实际值与预测值进行比较,显示相对误差在 1 – 12% 范围内。我们还提出了一种通过分析样本量对估计不同电池组退化的影响来估计建模扩散和退化路径演变所需的最少电池数量的方法。这种采样策略对于降低设计电池组、电池管理系统和电池热管理系统所需的运行模拟的计算成本特别有用。