摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
从消费电子到电动汽车,电池在各个领域的重要性越来越重要,强调了精确电池模型的关键必要性。本评论描述了电池模型的四个主要类别:经验,等效电路,数据驱动和基于物理的模型。像Nernst和Shepherd模型这样的经验模型提供了简单性,但缺乏精确度。等效电路模型在简单性和准确性之间取得了平衡,尽管有验证约束。数据驱动的方法利用机器学习来准确预测电池性能,但需要高质量的数据集。基于物理学的模型集成了基本的电化学过程,以详细理解,尽管计算复杂性增强。比较分析以锂离子电池为重点,揭示了计算效率和准确性之间的权衡。具有电解质动力学的单个粒子模型及其扩展单粒子模型作为有效的选项出现,带有电解质动力学的单个粒子模型显示出有希望的精度,类似于单个粒子模型。此外,在不同的电池化学分子上进行比较,公布了不同水平的建模精度。本文比较了跨化学的不同电化学建模技术和辨别最佳方法。是电池建模技术之一的电化学模型,已在本研究中进行了详细研究和研究,并为文献提供了有关化学模型如何与哪种电化学模型一起使用的文献。此外,这项研究在Pybamm中使用优化技术有助于现有的铁磷酸锂化学建模。综合提供了对各种建模方法的见解及其对电池研究和开发的影响,从而指导未来的调查,以针对特定应用的更量身定制的建模策略。
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
我们介绍了Florence-2,这是一个新型视觉基础模型,具有统一的,及时的代表,用于量级计算机视觉和视觉语言任务。在转移学习方面表现出色时,他们努力通过简单的说明执行各种任务,这意味着处理各种空间层次结构和语义粒度的复杂性。Florence-2旨在将文本推出作为任务说明,并以文本形式产生理想的结果,无论是限制,对象检测,接地还是分割。这种多任务学习设置需要大规模的高质量注释数据。为此,我们使用自动化图像注释和改进的迭代策略,共同开发了1.26亿张图像的FLD-5B。我们采用了一个序列结构,以训练佛罗伦萨-2,以执行多功能和全面的视觉任务。对众多任务的广泛评估表明,佛罗伦萨-2是具有未曾预性零击和微调功能的强大愿景基础模型竞争者。
摘要 了解基因在个体之间以及跨代际如何形成形态和功能是许多遗传学研究的共同主题。遗传学、基因组工程和 DNA 测序的最新进展强化了基因并不是决定表型的唯一因素这一观念。由于基因表达的生理或病理波动,即使是基因相同的细胞在相同条件下也会表现出不同的表型。在这里,我们讨论了可能影响甚至破坏基因型和表型之间轴的机制;修饰基因的作用、遗传冗余的一般概念、遗传补偿、最近描述的转录适应、环境压力源和表型可塑性。此外,我们还强调了诱导多能干细胞 (iPSC) 的使用、通过基因组工程生成同源系以及测序技术可以帮助从迄今为止被认为是“噪音”的东西中提取新的遗传和表观遗传机制。
摘要。量子计算机机器学习的最新进展主要得益于两项发现。将特征映射到指数级大的希尔伯特空间中使它们线性可分——量子电路仅执行线性运算。参数移位规则允许在量子硬件上轻松计算目标函数梯度——然后可以使用经典优化器来找到其最小值。这使我们能够构建一个二元变分量子分类器,它比经典分类器具有一些优势。在本文中,我们将这个想法扩展到构建多类分类器并将其应用于真实数据。介绍了一项涉及多个特征图和经典优化器以及参数化电路的不同重复的系统研究。在模拟环境和真实的 IBM 量子计算机上比较了模型的准确性。
在暴露和/或遥远的海洋地点进行水产养殖是一个新兴的行业和研究领域,旨在解决提高粮食安全的需求以及城市和沿海利益相关者向近岸和受保护的海洋水域扩张所带来的挑战。这一举措需要创新的解决方案,以使该行业在高能量环境中蓬勃发展。一些创新研究增加了对物理学、流体动力学和结构要求的理解,从而可以开发适当的系统。蓝贻贝 ( Mytilus edulis )、新西兰绿壳贻贝 ( Perna canaliculus ) 和太平洋牡蛎 ( Magallana gigas ) 是商业暴露双壳类水产养殖的主要目标。研究人员和业内成员正在积极推进现有结构,并为这些结构和适合此类条件的替代高价值物种开发新结构和方法。对于大型藻类(海藻)养殖,例如糖海带 ( Saccharina latissimi )、桨草 ( Laminaria digitata ) 或海带属。 (Ecklonia sp.)延绳系统被广泛使用,但需要进一步发展以承受完全暴露的环境并提高生产力和效率。在海洋鱼类养殖中,开放式海洋网箱设计主要有三种:柔性重力网箱、刚性巨型结构、封闭式网箱和潜水式网箱。随着水产养殖进入要求更高的环境,必须集中精力提高运营效率。本出版物考虑了与水产养殖扩展到暴露海域的要求有关的商业和研究进展,特别关注双壳类、大型藻类的养殖以及海洋鱼类养殖技术和结构发展。
摘要 ◥ 纤维连接蛋白的额外结构域 B 剪接变体 (EDB + FN) 是一种由肿瘤相关纤维母细胞沉积的细胞外基质蛋白 (ECM),与肿瘤生长、血管生成和侵袭有关。我们假设 EDB + FN 是使用抗体-药物偶联物 (ADC) 进行治疗干预的安全且丰富的靶点。我们描述了针对 EDB + FN (EDB-ADC) 的 ADC 的产生、药理学、作用机制和安全性概况。EDB + FN 广泛表达于胰腺癌、非小细胞肺癌 (NSCLC)、乳腺癌、卵巢癌、头颈癌的基质中,而在正常组织中则受到限制。在患者来源的异种移植 (PDX)、细胞系异种移植 (CLX) 和小鼠同源肿瘤模型中,EDB-ADC 通过位点特异性技术与 auristatin Aur0101 结合,表现出强效的抗肿瘤生长抑制作用。在
摘要 - 本文使用传输矩阵方法对分布式反馈(DFB)腔模型进行了深入研究,以优化光子应用中的光学性能。分析了各种参数,包括有效的折射率,光栅长度和空腔长度,以观察它们对DFB腔的反射率和透射率的影响。数值模拟,以建模光与腔内周期性变化的相互作用。结果显示最佳配置,可以增强DFB腔中的波长选择性。这项研究有助于设计有效的光子设备,特别是在激光器和光学滤镜中。模拟为指导高性能DFB激光器的发展提供了重要的见解。