摘要:跟踪不规则性直接影响铁路车辆操作的质量和安全性。定量检测和对轨道不规则性的实时监测非常重要。然而,由于频繁的可变车速,车辆操作是一个典型的非平稳过程。传统的信号分析方法不适合非平稳过程,因此难以定量检测轨道不规则的波长和振幅。为解决上述问题,本文提出了一种定量检测方法,在非平稳条件下,通过订单跟踪分析,在非平稳条件下具有可变的车辆速度。首先,建立了简化的车轮 - 权轨动态模型,以得出轴盒垂直振动与轨道垂直不规则性之间的定量关系。其次,提出了Simpson Double Integration方法,以根据Axle-Box垂直加速度计算轴框垂直位移,并优化了过程误差。第三,基于顺序跟踪分析理论,角域重采样是在轴框垂直位移时域信号上进行的,并结合了车轮旋转速度信号,并实现了轨道不规则不规则的定量检测。最后,根据模拟和现场测试分析案例对所提出的方法进行验证。我们提供了理论支持和方法参考,用于轨道不规则的定量检测方法。
摘要:风阵通常与严重危害有关,并可能造成结构和环境损害,从而使阵风预测成为天气预报服务的关键要素。在这项研究中,我们探讨了与天气研究和预测模型的数值天气预测输出集成的Ma-Chine学习(ML)算法的利用,以使风阵电位的估计与观察到的阵风相结合。我们使用了两种ML算法,即随机森林(RF)和极端梯度提升(XGB),以及两种统计技术:具有识别链函数(GLM-sidentity)的Generalized线性模型和具有原木链接功能(GLM-LOG)的广义线性模型(GLM-LOG),以预测Sover tomk for tomp form for the Somk wink for the Somest for Nouthest for Northest for Netast(NE)。我们使用了2005年至2020年间发生的61种模拟的热带和热带风暴来开发和验证ML和统计模型。为了评估ML模型性能,我们将结果与WRF的后阵风潜力进行了比较。我们的发现表明,ML模型,尤其是XGB的表现比统计模型和WRF(WRF-UPP)模型的统一后处理器表现出色,并且能够更好地与所有风暴中观察到的阵风相结合。ML模型面临着捕获阵风分布的上尾的挑战,学习曲线表明,XGB比RF更具效率,而在较少的风暴中产生更好的预测。
摘要:土壤有机碳(SOC)在全球碳循环和隔离中起着至关重要的作用,这是对其分布和控制的全面理解的基础。这项研究探讨了各种协变量对使用深度学习方法在本地(高达1.25 km)和大陆(美国)量表的SOC空间分布的重要性。我们的发现突出了地形属性在预测地形浓度分布中的重要作用,在局部规模上贡献了大约三分之一的总体预测。在大陆尺度上,气候在预测SOC分布中的重要性仅比地形高1.2倍,而在当地规模上,地形的结构模式分别比气候和植被的重要性分别高14和2倍。我们强调了地形属性,同时在各个尺度上都是SOC分布不可或缺的一部分,在本地规模上具有更强的预测指标,并具有明确的空间布置信息。尽管这项观察性研究没有评估因果机制,但我们的分析仍然提出了有关SOC空间分布的细微观点,这表明在局部和大陆尺度上,SOC的不同预测指标。这项研究所获得的见解对改进的SOC映射,决策支持工具和土地管理策略有影响,这有助于开发有效的碳封存计划并增强气候缓解措施。关键词:土壤有机碳,地形属性,数字土壤图,深度学习,特征重要性分析■简介
本文介绍了Parrot,这是一种LLM服务系统,侧重于基于LLM的应用程序的端到端体验。Parrot提出了语义变量,这是将应用程序级知识暴露于公共LLM服务的统一的抽象。语义变量注释请求提示符中的输入/输出变量,并在连接多个LLM请求时创建数据管道,从而提供了一种编程LLM应用程序的NATU-ralal方法。将语义变量暴露于公共LLM服务允许其执行惯例数据流分析,以发现多个LLM请求之间的相关性。这种相关性为基于LLM的应用程序的端到端性能打开了一个全新的优化空间。广泛的评估表明,鹦鹉可以为流行的LLM应用程序的流行和实际用例实现高度改进。
自主驾驶系统必须保证安全,这需要严格的实时性能。必须通过端到端截止日期完成一系列从传感器数据输入到车辆控制命令输出的过程。如果发生截止日期,则系统必须迅速过渡到安全状态。为了提高安全性,提出了一种截止日期的早期检测方法。所提出的方法表示自主驾驶系统是定向的无环图(DAG),并具有计时器驱动和事件驱动的节点的混合物。它根据端到端截止日期为每个节点分配适当的时间约束。但是,现有方法假设最差的执行时间(WCET)用于计算每个节点的时间约束,并且不考虑节点的执行时间变化,从而使截止日期的检测失踪。本文提出了一种截止日期的早期检测方法,以确定在DAG任务中每个节点执行开始时定量遗忘的可能性。它使用概率执行时间来计算每个节点的时间约束,这将执行时间视为随机变量。实验评估表明,所提出的方法降低了悲观情绪,这是使用WCET的常规方法的问题,然后实现了更准确的早期检测到截止日期的错过。评估还表明,截止日期所需的静态分析的执行时间遗失了早期检测,在实际级别内。
Vision Transformers(VIT)已成为代表学习中最新的架构,利用自我注意的机制在各种任务中脱颖而出。vits将图像分为固定尺寸的补丁,将其限制为预定义的大小,并需要进行预处理步骤,例如调整大小,填充或裁剪。这在医学成像中构成了挑战,尤其是在肿瘤等不规则形状的结构中。一个固定的边界盒子量产生的输入图像具有高度可变的前景与地面比率。进行医学图像可以降低信息并引入人工制品,从而影响诊断。因此,对感兴趣区域的裁缝量化作物可以增强特征代表能力。此外,大图像在计算上是昂贵的,尺寸较小,风险信息损失,表现出计算准确性的权衡。我们提出了Varivit,这是一种改进的VIT模型,该模型制定了用于处理可变图像尺寸的同时保持连贯的贴片大小。varivit采用新颖的位置嵌入调整大小方案,用于可变数量的斑块。我们还将在变量内实施一种新的批处理策略,以降低计算复杂性,从而导致更快的培训和推理时间。在我们对两个3D脑MRI数据集的评估中,变量超过了胶质瘤基因型预测和脑肿瘤分类中的香草vits和重新连接。它的F1得分分别为75.5%和76.3%,学习了更多的判别特征。与常规体系结构相比,我们提出的批处理策略将计算时间最多减少了30%。这些发现强调了图像表示学习中变量的功效。关键字:视觉变压器,建筑,表示,肿瘤分类
摘要:将CO 2减少到燃料和平台化学物质中是实现循环经济的一种有前途的方法。但是,既定的优化方法都不适合多变量的多次光催化系统,因为它们旨在优化一个性能指标,同时牺牲其他标准,从而限制整体系统性能。在此,我们通过定义一个考虑多个功绩数字的整体系统性能的指标来解决这一多项挑战,并采用机器学习算法来通过大型参数矩阵有效地指导我们的实验,以使整体优化可用于人类实验主义者。作为一个测试平台,我们采用了一个五组分系统,该系统将自组装到光催化胶束中,以减少CO 2-CO,我们对其进行了优化,以同时提高产量,量子收益率,周转数和频率,同时保持高选择性。使用机器学习算法利用数据集可以量化每个参数对整体系统性能的影响。出乎意料地揭示了缓冲液浓度是最佳光催化活性的主导参数,并且是催化剂浓度的四倍。通过提供对绩效瓶颈的前所未有的见解,增强可比性的前所未有的见解,扩大了这种方法来定义和优化整体绩效的使用和标准化将加速催化的进展,并取得了比较的比较。■简介
摘要:确保滚动轴承的平稳运行需要精确的故障诊断。特别是,在不同的工作条件下识别故障类型在实践工程中具有重要意义。因此,我们提出了一种加固集合方法,用于在不同的工作条件下诊断滚动轴承断层。首先,设计了一个加固模型来选择最佳的基础学习者。分层随机抽样用于从原始训练数据中提取四个数据集。强化模型分别由这四个数据集培训,我们获得了四个最佳基础学习者。然后,稀疏的ANN被设计为集合模型,并且可以成功识别可变工作条件下的故障类型的增强学习模型。进行了广泛的实验,结果证明了所提出的方法比其他智能方法具有优越性,具有显着的实践工程益处。
摘要 - 在机器人运动过程中以不同速度识别基础表面对于安全有效的机器人导航很重要。这项工作旨在通过在每脚下方固定的力传感器来识别多个室内表面,同时以不同的速度导航,从而增强了双子机器人的感知能力。通过将实时多对象支持向量机(SVM)与有效的时域功能相结合,提出了一种机器人的准确但成本较固的表面标识系统。在这种情况下,研究了四个有希望的手工制作的时域特征,其中均方根(RMS)功能被证明超过了其他三个功能。可以通过分别以两个不同的步行速度应用RMS来实现十倍SVM交叉验证中95.99%和98.16%的平均平均精度(地图)。具有较高的计算效率可以实现高分类精度,因此可以在诸如Arduino或Jetson Nano之类的低成本平台上进行系统部署,这使我们的方法适合在各种步行速度之间进行广泛应用。
通过贷款和投降获得政策现金价值可能会导致政策现金价值和死亡福利的永久减少,并否定任何免于失败的担保。投降费用可能适用于该政策,贷款可能会受到利息指控。尽管贷款通常不纳税,但如果保单失败或交出或交换未偿贷款,可能会造成税收后果。应税收入可能超过实际可用收益的金额。投降通常应征税,因为它们超过了对政策的剩余投资。如果该政策是修改后的捐赠合同(MEC),则以收入为基础对政策的贷款(包括政策的贷款)进行征税,并且可能在59-1/2之前的收益分配中征收10%的联邦所得税罚款。