深度学习(DL)培训算法利用非确定性来提高模型的准确性和训练效率。因此,多个相同的培训运行(例如,相同的培训数据,算法和网络)产生了具有不同准确性和训练时间的不同模型。除了这些算法因素外,由于并行性,优化和浮点计算,dl libraries(例如Tensorflow和Cudnn)还引入了其他方差(称为实现级别差异)。这项工作是第一个研究DL系统差异以及研究人员和实践中这种差异的认识的工作。我们在三个具有六个流行网络的数据集上进行的实验显示了相同的培训运行中的总体准确性差异。即使排除了弱模型,精度差也为10.8%。此外,仅实施级别的因素会导致相同培训运行的准确性差异高达2.9%,每类准确性差异高达52.4%,训练时间差为145.3%。所有核心库(Tensorflow,CNTK和Theano)和低级库(例如Cudnn)在所有评估版本中均显示实现级别的差异。我们的研究人员和从业人员的调查显示,有83.8%的901名参与者不知道或不确定任何实施级别差异。此外,我们的文献调查显示,最近顶级软件工程(SE),人工智能(AI)和系统会议中,只有19.5±3%的论文使用多个相同的培训运行来量化其DL AP-ap-paraches的方差。本文提高了对DL差异的认识,并指导SE研究人员执行诸如创建确定DL实现之类的挑战任务,以促进调试和提高DL软件和结果的可重复性。
摘要 自动建筑物提取最近被认为是遥感操作中的一项活跃研究。它已经进行了 20 多年,但由于图像分辨率、变化和细节级别,自动提取仍然遇到问题。由于物体密度高和场景复杂,这将是一个更大的挑战,尤其是在城市地区。本文将介绍一个高分辨率全色图像的理想框架,有助于可靠和准确的建筑物提取操作。提出的框架以及对领域知识(空间和光谱特性)的考虑提供了诸如场景中物体的性质、它们的光学相互作用及其对结果图像的影响等特征。为了更好地分析场景的几何性质,我们使用数字表面模型 (DSM)。已使用来自 IKONOS 和 QuickBird 卫星的各种图像对提出的算法进行了评估。结果表明,与最先进的方法相比,所提出的算法准确且有效。
摘要 - 由于测量结果并不比其不确定度更好,因此指定不确定度是计量学的一个非常重要的部分。人们倾向于相信物理学中的基本常数随时间不变,并且它们是建立国际系统 (SI) 标准和计量学的基础。因此,在最先进的水平上明确指定这些物理不变量的不确定性应该是计量学的主要目标之一。但是,通过观察某些物理量的行为,我们可能会扰乱标准,从而引入不确定性。一系列观测中的随机偏差可能是由测量系统、环境耦合或标准中的固有偏差引起的。由于这些原因,并且由于相关随机噪声在自然界中与不相关随机噪声一样普遍存在,因此普遍使用经典方差和均值标准差可能会混淆而不是澄清有关不确定性的问题;即,这些测量仅适用于随机不相关偏差(白噪声),而白噪声通常是观察到的偏差频谱的子集。如果事实上该系列不是随机和不相关的,即没有白色频谱,那么由于测量是在不同时间进行的,因此系列中每个测量都是独立的假设应该受到质疑。在本文中,频率标准、标准电压电池和量块的研究提供了长期随机相关时间序列的例子,这些时间序列表明行为不是“白色”(不是随机和不相关的)。本文概述并说明了一种简单的时域统计方法,该方法为幂律谱提供了一种替代估计方法,可用于大多数重要的随机幂律过程。了解频谱可以在存在相关随机偏差的情况下提供更清晰的不确定性评估,所概述的统计方法还为白频谱提供了一个简单的测试,从而使计量学家能够知道使用经典方差是否合适或是否要结合更好的不确定性评估程序,例如,如本文所述。