印尼政府继续鼓励基于技术的公共服务创新,包括开发智能城市和利用传感器技术的智能停车。通过提供实时车辆检测和停车位的可用性,使用您只看一次(YOLO)模型的智能停车系统的开发,从而提高了停车管理的效率。这项研究比较了三种Yolov11-Nano(Yolov11n),Yolov11-Mall(Yolov11s)和Yolov11-Medium(Yolov11M)(Yolov11m)的三种变体,以确定检测空旷的停车位最有效的模型。使用一个数据集进行了实验,该数据集由5725张具有各种条件的停车区图像,例如角度,照明和距离。此外,研究人员还使用了一个6秒的停车场时间段视频,用于培训的模型的测试材料。结果表明,Yolov11的每个变体都有其自己的优势。yolov11s具有最高的MAP50(0.967),Yolov11m的精度和回忆最高,而Yolov11n的FPS最高(62.14)。精度范围为7.4%-17.9%,Yolov11s获得了最高的精度。本研究的发现旨在确定用于智能停车实施的最有效的Yolov11变种。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
摘要:激光铭刻的石墨烯(LIG)是一种用于微电子应用的新兴材料,用于开发超级电容器,软执行器,互动发电机和传感器。制造技术很简单,但是文献中没有很好地记录了LIG质量的批处理变化。在这项研究中,我们进行了实验,以表征在电化学传感中应用的LIG电极制造中的批处理变化。在聚酰亚胺膜上使用CO 2激光系统合成了许多批次36个LIG电极。使用角膜测量法,立体显微镜,开路电位计和环状伏安法进行了LIG材料。疏水性和电化学筛选(循环伏安法)表明使用商业参考和反电极时,LIG电极批处理变化小于5%。金属化的lig化导致峰值电流和特定电容(阳极/阴极曲线之间的面积)显着增加。但是,批处理变化增加到约30%。研究了两种不同的铂电沉积技术,包括电静态和频率调节的电沉积。研究表明,具有高特异性电容和峰值电流的金属级连杆电极的形成可能是以高批量变异性为代价的。文献中尚未讨论此设计权衡,如果需要进行大规模使用的扩展传感器设计,这是一个重要的考虑。该研究的数据集可通过开放访问存储库获得。这项研究为LIG材料特性的变化提供了重要的见解,以扩展LIG传感器的可扩展开发。需要进行其他研究来了解这种变异性的潜在机制,以便可以开发提高重复性的策略来改善质量控制。
量子机器学习有可能为人工智能提供强大的算法。在量子机器学习中追求量子优势是一个活跃的研究领域。对于目前有噪声的中型量子计算机,已经提出了各种量子-经典混合算法。一种先前提出的混合算法是基于门的变分嵌入分类器,它由经典神经网络和参数化的基于门的量子电路组成。我们提出了一种基于模拟量子计算机的量子变分嵌入分类器,其中控制信号随时间连续变化:我们特别关注的是使用量子退火器的实现。在我们的算法中,通过线性变换将经典数据转换为模拟量子计算机的时变哈密顿量的参数。非线性分类问题所需的非线性纯粹由模拟量子计算机通过最终量子态对哈密顿量控制参数的非线性依赖性提供。我们进行了数值模拟,证明了我们的算法对线性不可分数据集(例如同心圆和 MNIST 数字)进行二分类和多类分类的有效性。我们的分类器可以达到与最佳经典分类器相当的准确度。我们发现,通过增加量子比特的数量可以提高分类器的性能,直到性能饱和并波动。此外,我们的分类器的优化参数数量与量子比特的数量成线性关系。因此,当我们的模型大小增加时,训练参数数量的增加速度不如神经网络快。我们的算法提出了使用当前量子退火器解决实际机器学习问题的可能性,并且它还可用于探索量子机器学习中的量子优势。
引言 在全球人口不断增长和气候变化的时代,粮食安全是人类生存和繁荣的主要目标之一 (Sekaran et al. , 2021)。作物改良是实现这一目标的核心战略之一。它包括提高产量和提高植物可食用部分的质量。事实证明,通过增加蛋白质和植物次生代谢物等必需成分的浓度来提高食品质量,对植物本身和食用这些植物的人类都有益 (Sahu et al. , 2022)。研究人员通过实验证实,作物改良与蛋白质含量提高之间存在相关性 (Chakraborty et al. , 2010; Zhang et al. , 2018a; Akbar et al. , 2023)。粳稻品种的蛋白质含量与氮和钾含量之间存在高度显著的正相关性 (Zhang et al. , 2018a)。同样,在
基于测量的量子计算 (MBQC) 为设计量子算法提供了一种独特的范式。事实上,由于量子测量固有的随机性,MBQC 中的自然操作不是确定性和单一的,而是增加了概率副产品。然而,到目前为止,MBQC 的主要算法用途是完全抵消这种概率性质,以模拟电路模型中表达的单一计算。在这项工作中,我们建议设计包含这种固有随机性的 MBQC 算法,并将 MBQC 中的随机副产品视为计算资源。作为随机性可以带来好处的自然应用,我们考虑生成建模,这是机器学习中以生成复杂概率分布为中心的任务。为了完成这项任务,我们提出了一种变分 MBQC 算法,该算法配备了控制参数,允许人们直接调整计算中允许的随机性程度。我们的代数和数值结果表明,这种额外的随机性可以显著提高某些生成建模任务的表达能力和学习性能。这些结果凸显了利用 MBQC 固有随机性的潜在优势,并激发了对基于 MBQC 的算法的进一步研究。
从不同环境中拍摄的照片重建对象的几何形状和外观很难作为照明,因此对象外观在捕获的图像中各不相同。这特别挑战更镜面的对象,其外观在很大程度上取决于观看方向。一些先前的方法使用嵌入向量的图像跨图像模型的外观变化,而另一些方法则使用基于物理的渲染来恢复材料和每位图像照明。这种方法在输入照明的显着变化时忠实地恢复了依赖的外观,并且倾向于产生大部分弥漫性结果。我们提出了一种方法,该方法通过首先在单个参考照明下使用多视图
批发商需要提供适当的文件作为授权持有人合法注册地址的证据(例如公司注册处的注册证书)。此地址可能与批发活动发生的地址不同。商业名称(也称为交易方式)是指任何个人、法人团体或合伙企业(无论是个人还是法人团体)在爱尔兰共和国的营业地点开展业务时使用的名称与其公司注册名称不同。还应提供在公司注册处注册商业名称的证据。
