R.Fittipaldi,M。Cuoco,A。Vecchione和S. V. Borisenko,SR 2 RUO 4的重归于的带状结构:一种Quasiparticle紧密结合方法,J。Electron Spectrosc。relat。现象。191,48(2013)。[11] M. Knupfer,F。Jerzembeck,N。Kikugugawa,F。Roth和J. Fink,传播费用
12 Lara Groves、Jacob Metcalf、Alayna Kennedy、Briana Vecchione 和 Andrew Strait。2024 年。“审计工作:探索纽约市算法偏见审计制度”。2024 年 ACM 公平、问责和透明度会议 (FAccT '24) 论文集。计算机协会,美国纽约州纽约,1107–1120。https://doi.org/10.1145/3630106.3658959 13 美国 FDA,“软件预认证 (Pre-Cert) 试点计划:量身定制的全产品生命周期方法和主要发现”(2022),https://www.fda.gov/media/161815/download?attachment
Stigmatoteuthis Arcturi Robson,1948年,属于家庭组织植物科,1880年至1881年,被称为珠宝鱿鱼,这是濒临灭绝的巨型巨型牛奶中最重要的组成部分之一,例如精子Whales(Clarke,Clarke,2006年)。珠宝的鱿鱼的特征是独特的形态,其皮肤上有许多摄影作品,以破坏其阴影并从深水中欺骗掠食者。他们的体内也具有高水平的不对称性,其眼睛的大小,形态和色素沉着较大,其本身是专门针对不同任务的(Thomas等,2017)。虽然较大的左眼看着从表面发出的昏暗的光线以发现其大型捕食者,但较小的右眼向底部看,寻找其Micronekton猎物的生物发光。s. arcturi是1900年的柱头stigmatoteuthis pfeffer属的三种同种异体物种之一,其特征在于男性生殖系统的重复末端部分,并且它们之间存在细微的形态差异,仅在成熟的男性中才能识别出来(Young&Vecchione,2016年)。它在热带和亚热带大西洋近海水域中分布,与任何其他头足类动物一样,Arcturi S. Arcturi迅速生长,这是由于非常激烈的掠夺性活动所增强。珠宝的鱿鱼是寄生虫的寄生虫的寄生虫宿主,例如Anysakis Dujardin,1845年和其他线虫(Palomba等,2021)。他们将这些寄生虫转移到较高的营养水平的宿主中,例如商业上重要的剑鱼和濒临灭绝的齿鲸,这些寄生虫结束了他们的生命周期。
2025 年 1 月 4 日星期六上午 9:00 ANN MARIE VECCHIONE r/b Robert & Susan DeSevo 下午 4:00 DUANE SBRISCIA r/b Ted Nebus, Jr. DEC'D MBRS WOJTASHEK r/b Lottie Barr & Ed Sawicki 2025 年 1 月 5 日星期日上午 8:00 IMMACULATA GERARD r/b Eleanor & John Iannelli LEROY McCARTHY r/b Mary Beth Kurdewan 上午 10:00 STEPHEN RUGGIERO r/b Jim & Pat Monroe HARRY LYNCH r/b Tony Hernandez 12:00 P.M. PELAGIA DeLEON r/b 她的家人 SHARI SATLER r/b Laura Lella Smith 下午 5:30教区人民 2025 年 1 月 6 日星期一上午 9:00 PATRICIA HIGGINS r/b Leahy 家族感恩节 r/b Serge & Elisa Escoto & Jun 2025 年 1 月 7 日星期二上午 9:00 RAMONITA TORRES 内景 r/b Wanda ANTONIO FELEO, SR. r/b DeLeon 家族 2025 年 1 月 8 日星期三上午 9:00 STEPHEN STERNIK r/b 家族 CAROLYN BRACH r/b 家族 2025 年 1 月 9 日星期四上午 9:00 WILLIAM GRONIKOWSKI r/b Bob & Terry Dreeke 星期五,2025 年 1 月 10 日 上午 9:00 WILLIAM KELLETT r/b Aurelia Flickinger 星期六,2025 年 1 月 11 日 上午 9:00 WILLIAM KELLETT r/b Jackson 美国退伍军人协会第 504 号哨所 下午 4:00 PAT J. PAPA r/b Thaddeus Wargacki LEO & MARY GANNON r/b 家庭 星期日,2025 年 1 月 12 日 上午 8:00教区人民 上午 10:00 HARRY LYNCH r/b Regina Donohue ED FLETCHER r/b Bettylu Johnson 下午 12:00约翰·亨利·赖德 r/b Piazza 家族 下午 5:30 帕姆·毛罗 r/b Sue & Jim McGann 路易斯·帕塔拉尼克 r/b 她的侄女
Ovido de Filippo 1†,Victoria L. Camnn 2†,Corrado Pancotti 3†,Davide DI Vace 2,Angelo Silverio 4,Victor Schweiger 2,Victor Schweiger 2,David Niederser 2,David Niederser 2,Konrad A. Szawan 2吉多。 Parodi 6,Eduardo Bossone 7,Sebastiano Gili 8,Michael Neuhaus 9,Jennifer Franke 1 0,Benjamin Meder 1 0,MiłoszJaguszewski11,Michelel Nouutias 1 2,Michel Nouutias 1 2 2 Burgdorf 1 6,Behrouz Kherad 1 7,CarstenTschöpe1 7,Annahita Sarcon 1 8,Jerold Shinbane 1 9,Lawrence Rajan 20,Guido Michels 2 1,Roman Pfister 22,Alessandro Cuneo 23,Claudius Jacobshagen 23,Claudius Jacobshagen 24.25,Mahir Karakans 26.27,Mahir Karak.27,3.27,Wolfg。 Koenig 28,29,Alexander Pott 30,Philippe Meyer 3 1,Marco Roffi 3 1,Adrian Banning 32,Mathias Wolfrum 33,Florim Cuculi 33,Richard Kobza 33,Thomas A. Fischer 34,Tuija Vasankari 35 35,Tuija Vasankari 35,K.E.Juhani Airaksinen 35,L。Christian Napp 36,Rafal Dworakowski 37,Philip Maccarthy 37,Christoph Kaiser 38,Stefan Osswald 38,Leonarda Galiuto 39,Christina Chan 40,Christina Chan 40,Christina Chan 40,Christina Chan 40,Christina 40,Christa galie Chriel galie gali galiuto dan999999 1,42,克莱门·德尔马斯43,奥利维尔·莱雷斯43,埃卡特琳娜·吉利亚罗娃44,亚历山德拉·希洛娃44,米哈伊尔·吉利亚罗夫44,伊布拉希姆·埃尔·巴特维45,46,易卜拉欣·艾布拉希姆·阿金(Ibrahim Akarohim akarohim akarolina akarolinapoledniková47davideek 47 davideek 47,ibrahim A Massoomi 48, Jan Galuszka 49, Christian UKENA 50, Gregor Poglajen 5 1, Pedro Carrilho-Ferrairaa 52, Christian Hauccica , Carla Paolini 54, Claudio Bilato 54, Yoshio Kobayashi 55, Ken Kato 55, IWAO Ishibashi 56, Toshihariu Himi 57, Jehangir Din 58, Al-Shammari 58, Abhiram Prasad 58, Abhiram Prasad 58, Abhiram Prasad 58, Charanjit S. Rihal 59, kan liu 60, P. Christian Schulze 6 1, Matteo Bianco 62, Lucas Jörg 63, Hans Rickli 63, Gonçalo Pestana 64, Thanh H. Nguyen 65, Michael Boohm 50,Lars S. Maier S. Maier S. Maier S. Maier S. Maier S. Maier S. Maier S. Maier S. Monika Budnik 68,Grzegorz Opolski 68,Holger Thiele 69,Johann Bauersachs 36,John D. Hrowitz 65,Carlo di Mario 70,Francesco Bruno 1,Francesco Bruno 1,William Kong 7 1 1. Mayank dalakoti 71。 Lüscher73,74,Jeroen J. Bax 75,Frank Ruschitzka 2,Gaetano Maria de Ferrari 1,Piero Fariselli 3,Jelena R. Ghadri 2,Rodolfo Citro 5,76,Fabrizio D'Sessenzo 1‡,和Christian Templin 2 *
Ovidio De Filippo 1 † , Victoria L. Cammann 2 † , Corrado Pancotti 3 † , Davide Di Vece 2 , Angelo Silverio 4 , Victor Schweiger 2 , David Niederseer 2 , Konrad A. Szawan 2 , Michael Würdinger 2 , Iva Koleva 2 , Veronica Dusi 1 , Michele Bellino 4 , Carmine Vecchione 4,5 , Guido Parodi 6 , Eduardo Bossone 7 , Sebastiano Gili 8 , Michael Neuhaus 9 , Jennifer Franke 1 0 , Benjamin Meder 1 0 , Miłosz Jaguszewski 11 , Michel Noutsias 1 2 , Maike Knorr 1 3 , Thomas Jansen 1 3 , Wolfgang Dichtl 1 4 , Dirk von Lewinski 1 5,Christof Burgdorf 1 6,Behrouz Kherad 1 7,CarstenTschöpe1 7,Annahita Sarcon 1 8,Jerold Shinbane 1 9,Lawrence Rajan 20,Guido Michels 2 1,Roman Pfist Ander Pott 30,Philippe Meyer 3 1,Marco Roffi 3 1,Adrian Banning 32,Mathias Wolfrum 33,Florim Cuculi 33,Richard Kobza 33,Richard Kobza 33,Thomas A. Fischer 34,Tuija Vasankari 35 , 拉法尔·德沃拉科夫斯基 37 , 菲利普·麦卡锡 37 , 克里斯托夫·凯泽 38 , 斯蒂芬·奥斯瓦尔德 38 , 莱昂纳达·加利乌托 39 , 克里斯蒂娜·陈 40 , 保罗·布里奇曼 40 , 丹尼尔·博格 4 1 ,42 , 克莱门特·德尔马斯 43 , 奥利维尔·莱雷斯 43 , 叶卡捷琳娜·吉利亚罗娃 44 , 亚历山德拉·希洛娃 44 , 米哈伊尔·吉利亚罗夫 44 , 易卜拉欣·埃尔-巴特拉维 45,46 , 易卜拉欣·阿金 45,46 , 卡罗琳娜·波莱德尼科娃 47 , 彼得·图塞克 47 , 戴维·E·温彻斯特 48 , 迈克尔·马苏米 48 , 扬·加卢斯卡 49 , 克里斯蒂安·乌凯纳 50 , 格雷戈尔·波格拉延 5 1 , 佩德罗Carrilho-Ferreira 52 , Christian Hauck 53 , Carla Paolini 54 , Claudio Bilato 54 , Yoshio Kobayashi 55 , Ken Kato 55 , Iwao Ishibashi 56 , Toshiharu Himi 57 , Jehangir Din 58 , Ali Al-Shammari 58 , Abhiram Prasad 59 , Charanjit S. Rihal 59 , Kan Liu 60 , P. Christian Schulze 6 1 , Matteo Bianco 62 , Lucas Jörg 63 , Hans Rickli 63 , Gonçalo Pestana 64 , Thanh H. Nguyen 65 , Michael Böhm 50 , Lars S. Maier 53 , Fausto J. Pinto 52 , Petr Widimsk´y 47 , Stephan B. Felix 4 1,42,Ruediger C. Braun-Dullaeus 66,Wolfgang Rottbauer 30,GerdHasenfuß24,Burkert M. 70,Francesco Bruno 1,William Kong 7 1,Mayank Dalakoti 7 1,Yoichi imori 72,ThomasMünzel1 3,Filippo Crea 39,ThomasF.Lüscher73,74,Jeroen J.Bax 75,Frank Ruschitzka 2,frank Ruschitzka 2,Gaetzka 2,Gaetzka de farisel deeria deeria dieria dieria pieria pierari 1,Pierari 1,Pierari 1,i 1, 3、Jelena R. Ghadri 2、Rodolfo Citro 5.76、Fabrizio D'Ascenzo 1 ‡、Christian Templin 2 * ‡
对生物机制的理解使得开发第一种靶向疗法成为可能。这些疗法最初针对的是导致疾病或与疾病特别相关的蛋白质。对 ER 在乳腺癌中的作用的理解以及对其阻断机制的识别推动了针对所谓“激素依赖性”乳腺癌(ER 阳性、雌激素受体阳性)的激素疗法的开发。他莫昔芬现在是 ER 阳性乳腺癌的标准治疗方法。它通过竞争性抑制雌二醇与其受体的结合起作用(Jordan,2003 年)。针对特定表位的单克隆抗体也构成了一类非常重要的靶向疗法。它们彻底改变了哮喘等炎症性疾病的治疗(Pelaia 等人,2017 年)。然而,对导致疾病的基因变异的识别为使用靶向疗法提供了主要动力。例如,相互易位t(9; 22),即费城染色体,是慢性粒细胞白血病 (CML) 的标志。因此,t(9;22) 易位最先用于确诊 CML (Heisterkamp 等,1990 年;Rowley,1973 年)。这种易位会产生异常的融合基因 (BCR-ABL)。由此产生的 BCR-ABL 融合蛋白由于其组成性酪氨酸激酶活性而具有致癌特性 (Lugo、Pendergast、Muller 和 Witte,1990 年)。与蛋白激酶催化位点结合的 ATP 竞争性抑制剂的开发导致了一种特异性疗法:伊马替尼或 Gleevec ®,从而彻底改变了 CML 和其他疾病的治疗方式 (Kantarjian 和 Talpaz,2001 年)。同样,致癌 NTRK(神经营养性原肌球蛋白相关激酶)融合基因的鉴定最近导致了特异性抑制剂(larotrectinib 或 Vitrakvi ®、entrectinib 或 Rozlytrek ®)的开发,用于治疗成人和儿童的 NTRK 阳性癌症(Cocco、Scaltriti & Drilon,2018 年)。在肿瘤学中,针对复发性点突变的特异性抑制剂也得到了广泛开发(Martini、Vecchione、Siena、Tejpar & Bardelli,2012 年;Skoulidis & Heymach,2019 年)。在某些情况下,会产生很少或根本不产生蛋白质。胰岛素就是这种情况,胰岛素依赖型糖尿病(I 型)患者缺乏这种酶。患者接受胰岛素疗法治疗,通过施用替代蛋白质来忠实重现胰岛素生理分泌的效果。 1982 年,第一种人类胰岛素蛋白上市,开创了一种新模式:可以修改激素蛋白的序列,使其药代动力学特性与患者的生理需求相匹配(McCall & Farhy,2013 年)。除了这些“蛋白质特异性”疗法外,还开发了针对 DNA(脱氧核糖核酸)的方法。至于蛋白质,最初的治疗尝试是基于对 DNA 的整体改变,例如通过使用烷化剂。这些药物会诱导非特异性共价键的产生,从而产生 DNA 加合物。它们会破坏复制和转录,这解释了它们在癌症治疗中的用途(Noll、Mason 和 Miller,2006 年)。插入也是小平面分子与 DNA 的一种特殊结合模式。它们会改变 DNA 的构象,破坏 DNA 和 RNA 聚合酶的活性(Binaschi、Zunino 和 Capranico,1995 年)。靶向 DNA 的分子并不局限于肿瘤学应用。例如,甲氨蝶呤是一种在细胞周期 S 期抑制核酸合成的抗代谢物,它已经取代了传统上使用的银盐用于治疗类风湿性关节炎(Browning、Rice、Lee 和 Baker,1947 年)。除了这些以非特异性方式与 DNA 相互作用的分子之外,人们还设想了针对性策略,以纠正导致疾病的有害基因。这种方法被称为基因疗法(Kaufmann、Büning、Galy、Schambach 和 Grez,2013 年)。一个非常有前景的例子(正在申请上市许可 [MA])涉及治疗 β 地中海贫血症,这是一种血红蛋白遗传性疾病。在这里,患者的干细胞被分离并被改造以替换有害基因,这样它们就可以产生正常的血红蛋白。然后将改造后的细胞注射回患者体内(Cavazzana-Calvo 等人,2010 年;Thompson 等人,2018 年)。这些令人惊叹的方法可以用于治疗许多疾病,包括糖尿病,尽管它们的实施非常复杂。最后,长期以来被认为是简单中间分子的 mRNA 最近已成为感兴趣的治疗靶点。 mRNA 是精细转录和转录后调控的位点,与许多疾病有关。因此,近年来 RNA 分子也受到关注,因为这些分子与蛋白质和 DNA 一样,是开发靶向疗法的候选分子(Disney、Dwyer 和 Childs-Dis-ney,2018 年)。第一种反义寡核苷酸 (ASO) 就是在这种背景下出现的。ASO 是单链合成 RNA 或 DNA 分子,平均长度为 12 至 25 个核苷酸。它们的序列与其靶标的序列互补,以确保特异性。因此,ASO 的序列由其靶标的序列决定。此外,这些分子可以定位在细胞质和细胞核中,从而可以到达细胞质和/或细胞核靶标(参见 Potaczek、Garn、Unger 和 Renz,2016 年的综述)。 ASO 经过化学改性,免受核酸酶的作用(否则会降解它们),并允许它们穿过质膜而无需矢量化。根据这些变化,ASO 可分为三代(如下所述)(图 1)。ASO 的化学性质很重要,因为它决定了其作用方式(降解目标 RNA 或掩盖位点而不降解)。因此,ASO 可以进行广泛的调节,