脑积水是一种慢性疾病,导致脑室异常增大。最常见的脑积水治疗方法是使用手术植入的分流器将多余的CSF排入其他身体部位,例如腹膜腔。但是,这些分流的失败率不高:大约50%的小儿脑积水分流器在植入的两年内失败,几乎所有脑积水患者在其一生中至少需要一个分流的修订[1,2]。尽管对该主题的工作数量不足,但分流器的机制仍然很少了解。许多研究已经调查了流动动力学,孔几何形状和阻力影响障碍物等因素如何[3,4]。为了促进有关此主题的研究,在韦恩州立大学(WSU)创建了多中心国家生物座席。在一项研究中使用了该生物库来检查众多FACTOR对患者进行修订的数量的影响以及对失败的细胞导管的成像分析[5,6]。文献表明导管的几何形状,阻塞和对CSF流量的抗性是分流故障的相互链接因素。因此,拥有一种研究人员可以用来收集和分析用于治疗脑积水的导管的大量定量流数据的设备将很有用。
道格拉斯·E·坎尼(Div),医学博士; Alexandros Protonotarios,医学博士; Athanasios Bakalakos,医学博士; PETROS SYRRIS博士; Massimiliano Lorenzini,医学博士; Bianca de Stavola博士;路易丝·比格雷格(Louise Bjerregaard),医学博士; Anne M. Dybro,医学博士; Thomas M. Hey,医学博士;弗雷德里克克·汉森(Frederikke G. Hansen),医学博士; MarinaNavarroPeñalver,医学博士; Maria G. Crespo-Leiro,医学博士; Jose M.Larrañaga-Moreira,医学博士;医学博士Fernando de Frutos;蕾妮·约翰逊(Renee Johnson)博士;托马斯·A·斯莱特(Thomas A. Slater),医学博士;医学博士Lorenzo Monserrat;医学博士Anshuman Sengupta;路易莎·梅斯特罗尼(Luisa Mestroni),医学博士; Matthew R.G.泰勒,医学博士,博士;医学博士Gianfranco Sinagra; Zofia Bilinska,医学博士; Itziar Solla-Ruiz,医学博士; Xabier Arana Ahaga,医学博士; Roberto barriales-Villa,医学博士; Pablo Garcia-Pavia,医学博士,博士; Juan R. Gimeno,医学博士; Matteo dal Ferro,医学博士;马可·梅洛(Marco Merlo),医学博士;医学博士Karim Wahbi;医学博士Diane Fatkin; Jens Mogensen,医学博士; Torsten B. Rasmussen,医学博士;佩里·埃利奥特(Perry M. Elliott),医学博士
道格拉斯·E·坎尼(Div),医学博士; Alexandros Protonotarios,医学博士; Athanasios Bakalakos,医学博士; Petros Syris,博士; Massimiliano Lorenzini,医学博士; Bianca de Stavola博士;路易丝·比格雷格(Louise Bjerregaard),医学博士; Anne M. Dybro,医学博士; Thomas M. Hey,医学博士;弗雷德里克克·汉森(Frederikke G. Hansen),医学博士;马里兰州玛丽娜·纳瓦罗(Marina Navarro),医学博士; Maria G. Crespo-Leiro,医学博士; Jose M.Larrañaga-Moreira,医学博士;医学博士Fernando de Frutos;蕾妮·约翰逊(Renee Johnson)博士;托马斯·A·斯拉特(Thomas A. Slatter),医学博士;医学博士Lorenzo Monserrat;医学博士Anshuman Sengupta;路易莎·梅斯特罗尼(Luisa Mestroni),医学博士; Matthew R.G. div>泰勒,医学博士,博士;医学博士Gianfranco Sinagra; Zofia Bilinska,医学博士; Itziar Solla-Ruiz,医学博士; Xabier Araana Achaga,医学博士; Roberto barriales-Villa,医学博士; Pablo Garcia-Pavia,医学博士,博士; Juan R. Gimeno,医学博士; Matteo dal Ferro,医学博士;马可·梅洛(Marco Merlo),医学博士;医学博士Karim Wahbi;医学博士Diane Fatkin; Jens Mugnsen,医学博士; Torsten B. Rasmussen,医学博士;佩里·埃利奥特(Perry M. Elliott),医学博士 div>
1心脏病学系,心脏中心,哥本哈根大学医院 - 丹麦哥本哈根9号钻机医院,丹麦哥本哈根东部2100; 2哥本哈根大学医院心脏病学 - Herlev and Gentofte,市长IB Juuls Vej 11,2730 Herlev,丹麦; 3哥本哈根大学卫生与医学科学系临床医学系,丹麦哥本哈根哥本哈根大学,哥本哈根北部2200; 4丹麦9220 AALBORG EAST的Fredrik Bajers VEJ 7K,AALBORG大学健康科学技术系; 5丹麦心脏基金会心血管流行病学与研究系,丹麦Vognmagergade 7,1120哥本哈根,丹麦; 6哥本哈根大学医院心脏病学和临床研究系 - 北西兰,Dyrehavevej 29,3400Hillerød,丹麦; 7阿尔堡大学医院心脏病学系,霍布罗夫18-22,丹麦9000阿尔堡; 8号哥本哈根大学公共卫生系ØsterFarimagsgade 5,1353哥本哈根,丹麦
抽象的客观心脏手术可能会导致心室性能和心肌损伤暂时受损。我们旨在表征对法洛(Tetrot)(TOF)进行修复或肺动脉瓣置换(PVR)患者围手术期损伤的反应。我们在一项前瞻性观察性研究中招募了从四个三级中心进行TOF修复或PVR的儿童。评估 - 包括血液采样和斑点跟踪超声心动图 - 发生在手术前(T1),在第一次随访(T2)(T2)和手术后1年(T3)。九十二个血清生物标记物被表示为主要成分,以减少多个统计测试。RNA测序是在右心(RV)流出样品上进行的。结果我们包括45例4.3(3.4 - 6.5)个月的TOF修复患者和16例PVR患者10.4(7.8 - 12.7)年。TOF修复后的心室功能显示出左心室全球纵向应变(GL)的降层模式(-18±4至-13±4至-20±2,每次比较)和RV GL(p <0.001)和RV GL(-19±5至-19±5至-14±4至-14±4至20±4,p <0.002)。对于接受PVR的患者没有看到这种模式。血清生物标志物表示为三个主要成分。这些表型与:(1)手术类型,(2)未校正的TOF和(3)早期术后状态。主成分在T2时增加了3个分数。TOF修复的增加比PVR高。RV流出道组织的转录组与患者的性别有关,而不是在研究人群中与TOF相关的表型有关。结论TOF修复和PVR后对围手术期损伤的反应以特定的功能和免疫学反应为特征。但是,我们没有确定与围手术期损伤相关的(DIS)有利恢复的因素。审判登记号荷兰试用登记册:NL5129。
摘要。标准的微电极技术用于评估急性缺氧对新生儿和成人腹膜心肌的细胞电活活性的影响。控制作用的成人和新生组织的潜在参数没有显着差异。三十分钟的急性低氧超灌注显着(p <0.05)降低了所有成人动作潜力指数。在新生儿制剂中,仅在50%复极(-17%)时仅动作电位持续时间,而在90%复极(-12%)下的动作势持续时间显着降低。缺氧60分钟后,动作电位幅度,最大舒张压和0阶段的新生儿上风速度仍未显着降低。尽管缺氧,但通过1小时的低氧超灌注(5.5 mM葡萄糖)诱导的新生儿作用电位参数的改变,尽管持续缺氧,但均被16.5 mM葡萄糖逆转。排除在低氧超舒适酸盐中的葡萄糖并不严重影响新生组织对缺氧的反应。在成人作用电位中,与正常(5.5 mm)葡萄糖的低氧溶液相比,每个动作电位参数的降低程度明显更大。在使用0 mM葡萄糖的新生儿制剂中缺氧超级灌注后,具有16.5 mm葡萄糖的氧合作用,导致动作电位参数超过了控制值4至25%。我们的数据表明,心肌对缺氧对细胞电活活性的有害影响具有更大的抵抗力。与成人心脏相比,这似乎与新生儿心肌的糖酵解活性更大有关。(Pediatr Res 19:1263-1267,1985)
使用 TomTec ImageArena 分析了 70 名患者的右心尖聚焦视图中的 RVGLS 和 RAGLS,并确定了与综合终点(持续性室性心律失常和心血管死亡)的关联。在 4.9 年的中位随访期内,26 名 (37%) 患者达到了终点。事件组的 RVGLS 显著受损(-11.5 [-13.3 至 -10.2] %),而无事件组(-15.8 [-17.1 至 -14.5] %,P < 0.001),RAGLS 也是如此(分别为 22.8 [21.4–27.4] % 和 31.5 [25.1–39.6] %,P < 0.001)。在 Cox 回归中,RVGLS(HR 1.36,P < 0.001)和 RAGLS(HR 0.92,P = 0.002)与不良事件风险较高相关。在多变量 Cox 回归模型中,RVGLS 和 RAGLS 与年龄、性别和常规 RV 参数无关,且随其递增,当 RVGLS 和 RAGLS 同时应用而非单独应用时,模型拟合度会得到改善。
引言左心室(LV)肥大(LVH)是一种众所周知的目标器官适应长期不受控制的高血压和其他心脏脉级危险因素。此外,它是许多心血管疾病(CVD)的强大而独立的预测指标,包括缺血性心脏病,心脏失败(HF),中风,心律不齐和CVD死亡率[1]。几种可修改和不可修改的风险面孔有助于LVH的发展,包括年龄,性别,遗传因素,高血压,糖尿病,肥胖,肥胖,慢性肾脏疾病(CKD),代谢综合征,阻塞性睡眠,疾病,sece睡,疾病的生活方式和饮食盐的盐含量[2]。基于用于定义LVH的人口特征和标准,高血压患者的患病率可能在36%至77%之间[3]。值得注意的是,与白人患者相比,黑人患者的LVH的牙齿含量增加了四倍,即使在调整了诸如年龄,收缩压(BP)和体重[4,5]之后,族裔确实在LVH中发挥着重要作用。lv几何形状通常根据由身体表面区域(LVMI)和相对壁厚(RWT)索引的LV质量分为四组:
结果:训练队列包括 92 377 个心电图-超声心动图对(46 261 名患者;中位年龄 8.2 岁)。测试组包括内部测试(12 631 名患者;中位年龄 8.8 岁;4.6% 综合结果)、急诊科(2 830 名患者;中位年龄 7.7 岁;10.0% 综合结果)和外部验证(5 088 名患者;中位年龄 4.3 岁;6.1% 综合结果)队列。内部测试和急诊科队列的模型性能相似,模型对左心室肥大的预测优于儿科心脏病专家基准。在模型中添加年龄和性别不会给模型性能带来任何好处。使用定量结果截止值时,内部测试(综合结果:AUROC,0.88,AUPRC,0.43;左心室功能障碍:AUROC,0.92,AUPRC,0.23;左心室肥大:AUROC,0.88,AUPRC,0.28;左心室扩张:AUROC,0.91,AUPRC,0.47)和外部验证(综合结果:AUROC,0.86,AUPRC,0.39;左心室功能障碍:AUROC,0.94,AUPRC,0.32;左心室肥大:AUROC,0.84,AUPRC,0.25;左心室扩张:AUROC,0.87,AUPRC,0.33)之间的模型性能相似,综合结果阴性预测值分别为 99.0% 和 99.2%。显着性映射突出显示了影响模型预测的 ECG 成分(所有结果的心前区 QRS 波群;LV 功能障碍的 T 波)。高风险 ECG 特征包括横向 T 波倒置(LV 功能障碍)、V1 和 V2 中的深 S 波和 V6 中的高 R 波(LV 肥大)以及 V4 至 V6 中的高 R 波(LV 扩张)。
2019年,欧洲心脏杂志上发表的一篇文章以首次心力衰竭(HF)认可,左心室射血分数(LVEF)≥65%,作为一种新的HF表型,具有超左心室左心室射血分数(HFSNEF)的心力衰竭,并促进对这一新类别进行研究的主要目的。他们分析了HF患者的死亡率,发现死亡率与LVEF之间存在U形关系。因此,与诊断为HF的其他患有保留的射血分数(HFPEF)的患者相比,HFSNEF患者的全因死亡率更高。本文描述了HFSNEF的当前状况,并根据我们小组的初步结果讨论了未来的观点。为了更好地治疗HFSNEF患者,心脏病专家和医生了解这种新表型的差异和相似性是至关重要的。