准确的安装对于确保正确的传感器功能和性能至关重要。在安装之前验证所有粗大尺寸。柄将容纳1-1/4英寸(32毫米)的最大柜台厚度。在1-3/8英寸(35毫米)的厕所或台面中直径为1-3/8“(35毫米)的安装分配器,在传感器和表面或碗之间至少为5-1/8”(130毫米)的间隙。要满足传感器范围的需求,并使用船上或容器式盆地应用,必须将分配器安装在盆地上,而不安装在盆地后面的柜台或表面上。至少需要在Verge水龙头和Verge肥皂钻探之间进行6英寸的中心间距,以确保正确安装组件。边缘水龙头需要2英寸(51毫米)的最大甲板厚度。
准确的安装对于确保正确的传感器功能和性能至关重要。在安装之前验证所有粗大尺寸。柄将容纳1-1/4英寸(32毫米)的最大柜台厚度。在1-3/8英寸(35毫米)的厕所或台面中直径为1-3/8“(35毫米)的安装分配器,在传感器和表面或碗之间至少为5-1/8”(130毫米)的间隙。要满足传感器范围的需求,并使用船上或容器式盆地应用,必须将分配器安装在盆地上,而不安装在盆地后面的柜台或表面上。至少需要在Verge水龙头和Verge肥皂钻探之间进行6英寸的中心间距,以确保正确安装组件。边缘水龙头需要2英寸(51毫米)的最大甲板厚度。
图3-1:根据国家(包括欧盟的未来)在2016年至2022年期间考虑的国际未来研究数量的分布。26图3-2:在国家创新背景下的主题宽度。33图3-3:国家创新背景下的研究强度。34图3-4:国际比较中主题宽度和研究强度的比较35图3-5:BMBF先知的主题强度2019-2022 2019-2022 37图4-1:英国研究与创新系统的概述42图42图42:英国预见过程46基于7-3的主题重点挪威创新系统64图4-4:挪威远见过程的结构2021 68图4-5:挪威研究的九个报告的主题重点72图4-6:澳大利亚国家创新与科学议程组织的组织84图4-7:澳大利亚国家外观2019 87图4-8:截至2015年,马来西亚创新系统的摘录95图4-9:日本创新系统的摘录,并通过“国家科学技术政策研究所”(NITEP)分类。107图4-10:Nietep远见过程的发展历史。109图4-11:日语的结构11。远见过程。110图4-12:根据欧盟创新Zeiger 2022的创新能力的全球比较。139132图4-13:欧盟技术预测研究的主题重点(EC,EP,...)135图4-14:欧盟研究的主题重点“ 100对未来的自然创新突破”。132图4-13:欧盟技术预测研究的主题重点(EC,EP,...)135图4-14:欧盟研究的主题重点“ 100对未来的自然创新突破”。
核酸,蛋白质和文献的数据库(约6小时)。详尽的启发式方法,用于对齐和搜索数据库中的生物序列(约6小时)。替代矩阵。多个对齐,配置文件和HMM。功能基序。转录组学简介(大约6小时)。基因组浏览器。基因和基因组的功能注释。蛋白质结构的比较和分类。次级和第三级结构的预测:同源性建模,螺纹,从头算法,基于AI的方法(大约8小时)。相互作用,途径,遗传疾病和SNP的数据库。生物学本体论。集成方法。蛋白质相互作用网络(约8小时)。实践会议将持续24小时,并将涵盖以前讲座中讨论的主题。
2)量子场理论和量子信息理论3)数学模型和PDE 4)拓扑数据分析5)代数几何和应用中的数学模型6)天体力学和空间应用中的数学模型7)数学模型,概率模型,概率,统计和机器学习8)邀请和数字分析9)数学列表和数字分析的邀请,并在数学上进行数学变化。时期:L。Apolloni(利兹大学),S。Baranzini(Storino大学),G。Barkeley(哈佛大学),M。Barton(BC Applied Math。),a.m。贝尼尼(帕尔马大学),P。Bielavsky(U.C.louvain),L。BruniBruno(Padova大学),K。Buzzard(帝国学院),D。Castorina(Napoli University of Napoli“ Federico II”),S。Chemla(Sorbonne-Pariscité大学),A。Clarke(Barcelona),A。Clarke(Upc Barcelona),Bonn)很少(约克大学),C。Hohlweg(UqMontréal),W。DeGraaf(Trento大学),G。Landi(Trieste大学),G。Marasingha(Exeter)(埃克塞特大学),L。Martinazzi,Martinazzi(罗马大学)帕维亚(Pavia),P。Majer(PISA大学),T.K。nguyen(北卡罗来纳州立大学),M。Nolasco(L'Aquila大学),F.A.E。 nuccio(大学Jean Monnet Saint-Etienne),R。Pagaria(博洛尼亚大学),G。Piacenza(IEC Lorrain-Nancy),F。Pratali(Sorbonne-Paris Nord),V。Reiner(明尼苏达州) tübingen-bonn),P。souplet(大学nguyen(北卡罗来纳州立大学),M。Nolasco(L'Aquila大学),F.A.E。nuccio(大学Jean Monnet Saint-Etienne),R。Pagaria(博洛尼亚大学),G。Piacenza(IEC Lorrain-Nancy),F。Pratali(Sorbonne-Paris Nord),V。Reiner(明尼苏达州) tübingen-bonn),P。souplet(大学nuccio(大学Jean Monnet Saint-Etienne),R。Pagaria(博洛尼亚大学),G。Piacenza(IEC Lorrain-Nancy),F。Pratali(Sorbonne-Paris Nord),V。Reiner(明尼苏达州) tübingen-bonn),P。souplet(大学
法规艺术。1-在罗马大学“ Tor Vergata”的医学和外科学院建立了机构,这是II级大学硕士“精密医学时代的头痛” - “精密医学时代的头痛”硕士时代的硕士是意大利语和英语。主持人以混合存在/距离模式保持。艺术。2-目的主人提供了加深主要和次要头痛领域知识的可能性,这可以使每个人都能扩大和改善其专业活动:从对疾病的残疾和社会经济影响的仔细分析到最新的生理病理学获取,到最新的生理病理学获取,从临床方面到诊断和治疗策略。<分为精密医学时代,确定那些可以从当前可用的治疗中受益的患者对于自定义护理和最小化成本至关重要。艺术。3-录取要求,主人针对那些根据法律编号拥有大学文凭的人。 341/1990或旧学位文凭或学位或专业/硕士学位(分别是部长法令的感官n。 509/1999和部长法令n。 270/2004):医学和手术;心理学;牙科和牙齿假体;药店;理疗;神经生理病理学技术;护理科学。出于工作或学习原因,允许居住在意大利的非欧盟学生入学。艺术。居住在国外的外国学生的入学人数受当前法规的监管。在国外获得的资格必须附有CIMEA证书。在入学时,必须在开始培训活动之前拥有访问权限。允许听众参加大师的频率。允许单个教学的频率。培训活动包括60个大学培训学分,等于学生的总承诺1500小时,额头教学和96个电子学习时间,其余小时旨在个人研究和准备最终测试。 可以得到教师学院的培训,改进和实习的认可,该资格获得了允许访问大师的资格,并且存在证明(包括在学习课程中激活的教学),前提是它们与一致培训活动包括60个大学培训学分,等于学生的总承诺1500小时,额头教学和96个电子学习时间,其余小时旨在个人研究和准备最终测试。可以得到教师学院的培训,改进和实习的认可,该资格获得了允许访问大师的资格,并且存在证明(包括在学习课程中激活的教学),前提是它们与一致
Westfort模型用于链条概念“可持续猪肉链”(KDV)。stichting kdv是连锁主管,有250多个养猪者与KDV相关。在KDV中,多年来在动物福利和环境领域已经完成了认证。碳足迹工具于2021年至2022年开发,最近被包括在此认证中。碳足迹工具是由Blonk顾问开发的,他们提供了所需的更新。与Vion模型相似,该模型主要用于使生产商(猪农夫)和买方的链水平上的排放透明。此外,它还使养猪者了解了碳足迹的结构以及哪种控制选择。
关于人工智能 (AI) 伦理的争论十分激烈,涉及多个方面。一些作者指出了人工智能系统的设计、使用和部署方面的伦理问题,以及它们对商业和社会的影响 (Coeckelbergh, 2021 ; Martin, 2019 ; Tollon, 2021 )。其他人则讨论了应赋予机器什么样的道德地位 (Awad et al., 2019 ; Smith & Vickers, 2021 ),以及在没有明确一方对人工智能系统所执行的操作负责的情况下如何处理“责任差距” (Orr & Davis, 2020 )。其他贡献者讨论了人机交互 (Losbichler & Lehner, 2021 ; Miller, 2019 )、隐私保护 (Guha et al., 2021 ; McStay, 2020 ) 所带来的挑战,或对特定领域(如商业战略)的影响。后者的一个例子是 Callanan 等人(2021 年),他们专注于数据挖掘和自动预测策略。这些文献的不断增长可以归因于人工智能和 4.0 革命工具在商业和整个社会日常生活中的不断普及(Schwab,2016 年;世界经济论坛,2023 年)。虽然这些技术及其改进从许多角度来看都是有益的,但它们也不可避免地引起我们对它们可能引起的问题和担忧的关注。鉴于人工智能伦理中的主题和观点的数量和多样性,对这一庞大的知识体系进行系统化是一项特别可取的贡献。因此,许多有价值的努力都致力于获得文献的净系统化。然而,他们中的大多数倾向于将重点放在对与特定领域相关的伦理问题进行分类(Borges 等人,2021 年;Hunkenschroer 和 Luetge,2022 年;Morley 等人,2020 年)或指导原则(Jobin 等人,2019 年;Khan 等人,2021 年)。但这些贡献未能提出处理这些问题的解决方案,或者即使提出了,也忽略了对支撑这些问题的伦理方法的任何分析。这种分析很重要,因为它代表了学术研究和商业实践之间的桥梁,利用人工智能技术改善社会和人类福祉。此外,通过理解潜在的道德哲学,我们可以就人工智能伦理进行更有意义、更连贯的讨论,它可以帮助我们识别和解决现有方法中的弱点,使它们更有效地应对人工智能复杂的伦理挑战。出于这些原因,本文进行了系统的文献综述,以调查普遍存在的担忧、拟议的解决方案和突出的伦理方法,旨在加强解决人工智能伦理中伦理问题的方式。因此,本文所述的工作实现了三重目的。首先,它确定了人工智能文献中最相关的伦理问题。其次,它描述了现有学术文献中处理这些问题的主要建议和解决方案。第三,本文探讨了这些解决方案所基于的伦理方法。为了实现这些目标,本文遵循系统文献综述的方法,分析了 1986 年至 2021 年 12 月 31 日的 309 篇文章。本文围绕 Rowley 和 Slack (2004) 建议的阶段进行:(i) 给出主题的基本定义;(ii) 阐明为什么该主题令人感兴趣;(iii) 阐述已经对该主题进行了哪些研究;(iv) 清晰地总结从文献综述中得出的研究机会和目标。按照这种结构,第 2 节简要介绍了人工智能伦理的定义和重要性。然后,它讨论了现有的关于人工智能伦理的评论,以确定研究差距。接下来是对本文采用的协议、搜索、标准和质量评估的分析。第 3 节对样本中的 309 篇学术文章进行了定量和主题分析,描述了在文献中发现的管理人工智能相关伦理问题的解决方案。它还考察了——作为文献中的一项新内容——道德
神经系统污染可能是可以帮助恢复大脑健康的方法的发展(Raj等,2012; Poudel等,2020)。从引入术语Connectome(Sporns等,2005)中,当它的确切结构在很大程度上未知时,直到今天,还进行了一些研究来研究Connectome非常复杂的网络(Bullmore和Sporns,2009)以及其中发生的动态过程(Avena-Koenigsberger等人,2018年)。尤其是人类连接组动力学以多个时间尺度发生,范围从毫秒到几年,并且使用了不同类型的测量设备来捕获它们(Mitra,2007)。这些不同的时间尺度揭示了大脑功能和行为的各个方面。最短的时间量表与功能性脑网络中的快速神经处理和信息交换有关。神经传递和突触通信在这项快节奏的活动中起着至关重要的作用。脑电图(EEG)和磁脑电图(MEG)是捕获这些快速电气信号的选择性技术。在较高的时间尺度上,从秒到几分钟,连接组的动力学与特定任务期间的认知过程和功能连接性变化有关。功能性MRI(fMRI)通常用于研究这些变化。例如,在记忆任务中,某些大脑区域可能表现出增加的功能活动,表明它们参与了记忆网络(Murphy等,2020)。静止状态fMRI用于研究内在的大脑活动,而个人没有执行任何特定的任务。从几分钟到几个小时,连接组的动力学与功能连通性中的静止状态相关(Smitha等,2017)。在较高时间尺度上发生的过程的示例,从几天到几年,学习,记忆巩固过程,大脑发育和认知能力下降。特别是,我们感兴趣的过程是在这些时间尺度上发生的创伤性脑损伤和退化性脑动力学。对于这类疾病,将功能信息与研究结构连接组引起的功能信息集成至关重要,这代表了不同大脑区域之间的解剖联系。扩散张量成像(DTI)和扩散加权成像(DWI)是创建结构连接组的主要常用MRI技术。我们选择使用由DTI和DWI数据产生的连接组,因为有证据表明它参与了神经疾病的传播(Torok等,2018; Weickenmeier等,2019; Wilson等,2023)。然而,重要的是要强调,这项工作中提出的方法独立于一个人决定使用的类型(无论是基于功能,接近性,突触连接还是大脑生理学的其他结构);必须选择最合适的网络以准确描述给定神经病理的传播。越来越多的关于退化性脑疾病的作品(Raj等,2012; Raj等,2015; Pandya等,2019)和创伤性脑损伤(Poudel等,2020)使用网络扩散作为一种有缺乏的和预测的动力学模型。在所有需要建模某种网络动力学的应用中,网络扩散过程(也称为热扩散过程)变得越来越重要。应用程序领域是机器学习最多的,例如(例如,(Hofmann等,2008)和最近的(Stolfif et al。,2023))到网络生物学(请参阅(Carlin等,2017)和
1702A Intel 1702 适配器 256 x 8 2048 24 EPROM 需要适配器,U = -9V 1302A Intel 1702 适配器 256 x 8 2048 24 ROM 需要适配器,U = -9V 1602A Intel 1702 适配器 256 x 8 2048 24 PROM 需要适配器,U = -9V Am1702A AMD 1702 适配器 256 x 8 2048 24 EPROM 需要适配器,U = -9V MM1702A National 1702 适配器 256 x 8 2048 24 EPROM 需要适配器,U = -9V 1702A Signetics 1702 适配器 256 x 8 2048 24 EPROM 需要适配器,U = -9V U501 (DDR) 1702 适配器 256 x 8 2048 24 ROM 需要适配器,U = -9V U551 (DDR) 1702 适配器 256 x 8 2048 24 PROM 需要适配器,U = -9V U552 (DDR) 1702 适配器 256 x 8 2048 24 EPROM 需要适配器,U = -9V K505РР1 (UdSSR) 1702 适配器 256 x 8 2048 24 EPROM 需要适配器,U = -9V,未经测试 CDP18U42CD RCA 74S271/470 适配器 256 x 8 2048 TS 24 EPROM 12=Vcc,22=Vsat,23=Vdd,24=Vss,单 5V 读取,未经测试 2704 2704 X 512 x 8 4096 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12/22=Vss, 未经测试 2704 Intel 2704 X 512 x 8 4096 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12/22=Vss, 未经测试 CDP1832 RCA 2704 X 512 x 8 4096 24 EPROM 24=Vcc, 21=nc, 19=nc, 12=Vss, 仅 5V, 未经测试 MM4204 National 2704 适配器 512 x 8 4096 TS 24 EPROM U = -12V, 5V, 使用 2704 设置与适配器MM5204 National 2704 适配器 512 x 8 4096 TS 24 EPROM U = -12V, 5V, 使用 2704 设置和适配器 2708 Intel 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss F2708 Fairchild 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss F2708 Fairchild 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss MB8518 Fujitsu 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss SFF71708 Mostek 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss MCM2708 摩托罗拉 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss MCM68708 摩托罗拉 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss MM2708 National 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss NTE2708 NTE 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss MSM2708 Oki 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss TMS2708 德州仪器 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss MSM3758 Oki 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss, 未经测试 CDP1834 RCA 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=nc, 19=nc, 12=Vss, 仅 5V, 未经测试 U505 (DDR) 2708 X 1k x 8 8192 24 ROM 仅 5V U555 (DDR) 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss K573РΦ1 (UdSSR) 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd, 12=Vss K573RF1 (UdSSR) 2708 X 1k x 8 8192 24 EPROM 24=Vcc, 21=Vbb, 19=Vdd,12=Vss 2716 英特尔 2716 X 2k x 8 16384 24 EPROM Am2716 AMD 2716 X 2k x 8 16384 24 EPROM Am4716 AMD 2716 X 2k x 8 16384 24 EPROM NMC27C16 仙童 2716 X 2k x 8 16384 24 EPROM MBM2716 富士通 2716 X 2k x 8 16384 24 EPROM HN462716 日立 2716 X 2k x 8 16384 24 EPROM MMN2716 微电子 2716 X 2k x 8 16384 24 EPROM M5L2716 三菱2716 X 2k x 8 16384 24 EPROM MCM2716 摩托罗拉 2716 X 2k x 8 16384 24 EPROM 27C16 国家 2716 X 2k x 8 16384 24 EPROM MM2716 国家 2716 X 2k x 8 16384 24 EPROM uPD2716 NEC 2716 X 2k x 8 16384 24 EPROM NTE2716 NTE 2716 X 2k x 8 16384 24 EPROM MSM2716 Oki 2716 X 2k x 8 16384 24 EPROM M2716 SGS 2716 X 2k x 8 16384 24 EPROM M2716 ST 微电子 2716 X 2k x 8 16384 24 EPROM TMM323 东芝 2716 X 2k x 8 16384 24 EPROM TMS2516 德州仪器 2716 X 2k x 8 16384 24 EPROM ET2716 汤姆逊 2716 X 2k x 8 16384 24 EPROM U556 (DDR) 2716 X 2k x 8 16384 24 EPROM K573RF2 (UdSSR) 2716 X 2k x 8 16384 24 EPROM TMS2716 摩托罗拉 TMS2716 X 2k x 8 16384 24 EPROM 12=Vss, 19=Vdd, 21=Vbb, 24=Vcc TMS2716 德州仪器 TMS2716 X 2k x 8 16384 24 EPROM 12=Vss, 19=Vdd, 21=Vbb, 24=Vcc 2732 英特尔 2732 X 4k x 8 32768 24 EPROM Am2732 AMD 2732 X 4k x 8 32768 24 EPROM F2732 飞兆半导体 2732 X 4k x 8 32768 24 EPROM NMC27C32 飞兆半导体 2732 X 4k x 8 32768 24 EPROM MB8532 富士通 2732 X 4k x 8 32768 24 EPROM MBM2732 富士通 2732 X 4k x 8 32768 24 EPROM CDM5332 GE 2732 X 4k x 8 32768 24 ROM 兼容 2732 Ro9333 GI 2732 X 4k x 8 32768 24 ROM 兼容 2732,当 18/20=LOW 时可读取 Ro9433 GI 2732 X 4k x 8 32768 24 ROM 兼容 2732,当 18/20=LOW 时可读取 HN462732 Hitachi 2732 X 4k x 8 32768 24 EPROM 2732A Intel 2732 X 4k x 8 32768 24 EPROM M5L2732 Mitsubishi 2732 X 4k x 8 32768 24 EPROM NMC27C32 National 2732 X 4k x 8 32768 24 EPROM uPD2732 NEC 2732 X 4k x 8 32768 24 EPROM M2732 ST Microelectronics 2732 X 4k x 8 32768 24 EPROM TMM2732 Toshiba 2732 X 4k x 8 32768 24 EPROM TMS2732 Texas Instruments 2732 X 4k x 8 32768 24 EPROM WS57C43 WSI 2732 X 4k x 8 32768 24 PROM 与 2732 兼容,当 18=HIGH、20=LOW 时可读取 U2732 (DDR) 2732 X 4k x 8 32768 24 EPROM 2333 2732 X 4k x 8 32768 24 ROM 兼容 2732,当 18/20=LOW 时可读 2764 Intel 2764 X 8k x 8 65536 28 EPROM Am2764A AMD 2764 X 8k x 8 65536 28 PROM MBM2764 Fujitsu 2764 X 8k x 8 65536 28 EPROM MBM27C64 Fujitsu 2764 X 8k x 8 65536 28 EPROM HN482764 Hitachi 2764 X 8k x 8 65536 28 ROM 2764A Intel 2764 X 8k x 8 65536 28 EPROM MK37000 Mostek 2764 X 8k x 8 65536 28 ROM 1/26/27=nc NMC27C64 National 2764 X 8k x 8 65536 28 EPROM M2764 SGS-Thomson 2764 X 8k x 8 65536 28 EPROM M2764A ST Microelectronics 2764 X 8k x 8 65536 28 EPROM U2764 (DDR) 2764 X 8k x 8 65536 28 EPROM TMS2564 Texas Instruments TMS2564 X 8k x 8 65536 28 EPROM 27128 Intel 27128 X 16k x 8 131072 28 EPROM Am27128A AMD 27128 X 16k x 8 131072 28 PROM MBM27128 富士通27128 X 16k x 8 131072 28 EPROM HN4827128 日立 27128 X 16k x 8 131072 28 EPROM NM27C128 National 27128 X 16k x 8 131072 28 EPROM UPD27128 NEC 27128 X 16k x 8 131072 28 EPROM M27128A ST Microelectronics 27128 X 16k x 8 131072 28 EPROM TMM24128 东芝 27128 X 16k x 8 131072 28 PROM 未经测试 27256 Intel 27256 X 32k x 8 262144 28 EPROM 6212424 AMD 27256 X 32k x 8 262144 28 EPROM