验证者或奖励模型通常用于增强大语言模型(LLM)的推理性能。一种常见的方法是最好的N方法,其中LLM生成的N候选解决方案由验证者排名,并且选择了最好的解决方案。基于LLM的验证者通常被培训为判别性分类器以评分解决方案,但它们并未利用验证的LLM的文本生成能力。为了克服这一限制,我们使用无处不在的下一步预测目标提出了培训验证仪,共同核对和解决方案生成。与标准验证符相比,这种生成验证符(GENRM)可以从LLM的几个优点中受益:它们与指导调整无缝集成,启用了经过思考的推理,并且可以通过多数投票利用额外的测试时间计算来获得更好的验证。我们证明GENRM的表现优于歧视性,DPO验证者和LLM-AS-A-a-gudge,导致了最佳N的性能增长,即5%→45。算法任务的3%和73%→93。GSM8K的4%。 在易于硬化的概括设置中,我们观察到28%→44的改善。 数学的6%,37。 9%→53。 MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。GSM8K的4%。在易于硬化的概括设置中,我们观察到28%→44的改善。数学的6%,37。 9%→53。 MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。数学的6%,37。9%→53。MMLU摘要代数为5%。 此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。 最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。MMLU摘要代数为5%。此外,我们发现具有合成验证原理的训练GENRM足以在数学问题上发现微妙的错误。最后,我们证明GENRM会以模型大小和测试时间计算来表现出色。
解释了验证的时间和频率,以及申请在初次验证后进入的四年临时有效期。本节还确定了 (i) 每种指标(零容忍、主要、轻微)必须在哪一年之前达到合规要求,以及 (ii) 指标不合规时所需的纠正措施时间表。2.8 供应商自我评估部分(7.0 版第 5.2.6 节)已从 2017 年版中删除。
图3:生成验证者的例证,即GenRM和GenRM-Cot。给出了一个问题和候选解决方案,genRM直接对llm进行了填补,以回答“答案正确(是/否)吗?”的问题。通过sft对对应于“是”或“否”的下一步响应。在推断期间,通过提取“是”令牌(4)的概率获得验证者分数。相比,GenRM-COT FINETUNES llm在产生最终的是/否代币之前产生验证链(COT)的基本原理。在测试时间时,我们采样了多个COT理由,并使用多数投票来计算“是”的平均概率,从而使GenRM-COT能够利用其他推理计算以更好地验证。
有效的车辆访问控制有效地自动化了在仓库,服务中心,地段,优先车道,停车设施和其他各个位置的授权车辆的进入和退出程序。以验证允许清单或区块列表的车牌以有效,无缝的访问控制。每个列表中最多支持10,000个车牌。添加与轴网络门控制器集成的更多功能,以增加选项和功能。轴网络门控制器与Axis Camera Station安全入口结合使用,支持更高级的访问规则,时间表和详细的事件日志。与各种合作伙伴软件兼容,提供各种凭证选项和量身定制的功能以满足特定需求。在流量缓慢的流量缓慢的情况下,该应用程序可以检测和读取在通行道路,城市中心和封闭区域(例如校园,港口或机场)的通行道路上的交通中的车牌。这允许在轴相机站等VMS中进行LPR-Frensic搜索和LPR触发的事件。
本文的会议版本发表在第 48 届国际密码技术理论与应用会议 (EUROCRYPT 2019) 的论文集上。∗ 由 AFOSR YIP 奖项编号 FA9550-16-1-0495 和西蒙斯计算理论研究所的量子博士后奖学金资助。† 本工作部分是在 AG 加入 IRIF、CNRS/巴黎大学时进行的,在那里他得到了 ERC QCC 的支持,本工作部分是在 AG 加入 CWI 和 QuSoft 时进行的,在那里他得到了 ERC Consolidator Grant 615307-QPROGRESS 的部分支持。‡ 由 NWO Veni 创新研究基金 (项目编号 639.021.752) 资助; NWO Klein 资助项目编号为 OCENW.KLEIN.061;以及 CIFAR 量子信息科学计划。§ 由 NSF CAREER 资助项目 CCF-1553477、MURI 资助项目 FA9550-18-1-0161、AFOSR YIP 奖励编号 FA9550-16-1-0495 和 IQIM(NSF 物理前沿中心)(NSF 资助项目 PHY-1125565)以及戈登和贝蒂摩尔基金会(GBMF-12500028)提供支持。
最近,量子计算受到了许多技术突破[7]和不断增加的投资的驱动。原型Quantum计算机已经可用。公众,尤其是学生,研究人员和技术爱好者的机会,可以通过云服务(例如Amazon Braket [1]或IBM Quantum [2]来访问Quantum Computing设备迅速增加。由于量子计算的复杂性和概率性质,量子程序中错误的机会远高于传统程序,而常规的正确保证手段(例如测试)在量子世界中的适用性要少得多。量子程序员需要更好的工具来帮助他们编写正确的程序。因此,研究人员预计,正式的验证将在量子软件质量保证中发挥至关重要的作用,并且近年来已经朝着这个方向投入了重要意义[5,11,11,21,41,41 - 43,45,46]。然而,自动化量子程序/电路验证的实用工具仍然缺失。本文介绍了AutoQ 1,这是一种基于[14]中提出的方法的量子电路验证的全自动工具。特别是,AUTOQ检查了Hoare式规范的有效性{pre} c {post},其中c是openQasm格式[17]和
安全协议的验证是自1990年代以来非常活跃的研究领域。安全协议无处不在:Internet(特别是用于https:// connections使用的TLS协议),WiFi,移动电话,信用卡,。。。。众所周知,他们的设计容易出错,并且未通过测试检测到错误:仅当对手试图攻击协议时,它们才会出现。因此,正式验证它们很重要。为了使安全协议形式化,需要为其数学模型。通常会考虑一个活跃的对手,可以收听网络上发送的消息,计算自己的媒介,然后将它们发送到网络上,就好像它们来自诚实的参与者一样。为了促进协议的自动验证,大多数协议验证者都考虑了加密的符号模型,也称为“ dolev-yao模型” [18,15]。在此模型中,加密原语(例如加密)被视为理想的黑盒,以功能符号为代表。消息是通过这些原始词的术语建模的;并且对手仅限于应用定义的原语。这也称为完美的加密假设:对手解密消息的唯一途径是将解密函数与正确的密钥一起使用。在这样的模型中,协议验证的主要任务之一是计算对手的知识,即对对手可以获得的一组术语。这仍然是并非繁琐的,因为该集合通常是无限的,但是它比有关斑点和概率的推理要简单得多。两个最广泛使用的符号协议验证者可能是proverif [11]和tamarin [17]。有关协议验证领域的更多详细信息,我们将读者转移到调查[10,6]。在本文中,我们专注于协议验证者proverif,可以从https://proverif.inria.fr下载。我们在下一节中介绍了王朝的概述,并关注其喇叭条款分辨率算法。
Viper MLV / MLV II 在严苛的航线环境中拥有 20 年的可靠性和耐用性。BAE Systems 不断开发和集成新功能,以支持 F-16 的所有 Block/版本,包括新型 F-16V 和 Block 70 F-16。Viper MLV / MLV II 支持 100 多个 F-16 航空电子系统,为整个 FMS 和美国空军 F-16 用户社区提供功能更新,而开发成本仅为独立系统的一小部分。我们通过识别复杂需求和开发独特的软件和硬件解决方案来满足客户需求。新型 Viper MLV II 提供网络强化硬件架构,确保长期的 F-16 航空电子设备支持。
7)≈1。802。如果可以在任意较大的常数C中显示相同的下限,则分离l̸= np将立即跟随。在以下内容中,我们使用ts [n c]来表示使用n c时间通过n o(1)空间算法确定的语言类。上述所有作品都建立在交替交易证明方法上[27]。这种方法结合了两个要素:通过“将量化器”(∃或∀)添加到交替算法中,从而降低算法的运行时间的加速规则,以及使用复杂性理论假设(例如,SAT∈TS[n C])以“删除量子”和“稍微增加量子”的速度,并使用复杂的理论假设(例如,降低”规则。这两个规则都产生了复杂性类别的包含。我们的最终目标是通过按照不错的顺序应用这些规则并使用适当选择的参数来矛盾时间层次定理(例如,可以在n 99 time中证明n 100个时间计算)。一个人可能希望[25]的常数c可以任意大,并最终表明l̸= np。不幸的是,在[7]中,R。Williams和S. Buss表明,纯粹基于从该工作线的加速和减速规则的交换交易证明可以改善[25]的指数。尽管如此,希望交替交易的证明可能会产生比SAT更难的问题更强大的界限。例如,R。Williams[27]表明,对于C <2,σ2P -Complete问题σ2不在TS [N C]中。903。在本文中,我们在这个方向上取得了进一步的进步。特别是,我们专注于NTime [N],Qcmatime [n]和Matime [N]的量子和随机类似物,对这两个类别获得了更强的下限。3我们认为,我们的下限qcmatime [n](主定理2)特别有趣,因为它在不需要Oracles的情况下产生了量子复杂性类别和经典复杂性类别之间的非平凡分离。4 While there are several results [ 6 , 21 , 24 ] demonstrating the power of quantum computation against very restricted low-depth classical circuit models ( NC 0 , AC 0 , AC 0 [2]) which also imply strong oracle separation results, our result appears to be the first non-trivial lower bound for a quantum class against the much more general random-access machine model (with simultaneous time and space constraints).