过程奖励模型(PRM)已被证明有效地通过杠杆化增加推理时间计算来增强大语模型(LLMS)的数学推理。曾经对他们进行数学数据的主要训练,并且尚未严格研究其对非数学领域的普遍性。回应,这项工作首先表明当前的PRM在其他域中的性能较差。为了解决这一限制,我们引入了VESTAPRM,这是一种使用我们的新数据生成和注释方法生成的合成推理数据的多域PRM。ver-saprm实现了各种领域的一致性增长。例如,在MMLU-PRO类别中,通过加权多数投票的VersAPRM,比大多数投票基线获得了7.9%的表现增长,超过了QWEN2.5-MATH-PRM的增长1.3%。我们通过开放VersaPRM的所有数据,代码和模型来进一步为社区做出贡献。
VERSA的服务点基于行业领先的Versa操作系统,并且在全球分布中,以提供可靠且安全的坡道。网关对用户进行身份验证,授权应用程序访问权限并保护您的企业网络免受外部威胁,同时集成高级路由,全面安全性和市场领先的SD-WAN。他们可以安全地连接到您现有的网络和数据中心基础结构并集成,并且智能网关选择可确保用户和设备始终根据实时状态和路由信息连接到最接近,最佳性能的网关。
Characterization of the unit - Name: Laboratory of engineering of the Versailles systems - Acronym: Lisv - Label and Number: EA 4048 - Number of teams: Three teams - Composition of the management team: Mr. Éric Monacelli (Director) Scientific Panels of the Panel 1: ST6: ST6: Sciences and Technologies of Information and Communication Panel 2: ST5: Sciences for the thematic engineer该单元是多学科和技术的,结合了理论方法和实验方法。它们涵盖了智能系统及其相互作用领域的广泛范围。在相关评估期开始时,包括2018年至2021年,该单元在两个团队中结构:一方面是“交互式机器人技术(RI)”,另一方面是“高级系统的仪器(ISA)”。2022年1月1日,由RI团队分队创建了第三支团队:“智能和协作的机器人循环系统系统(Symric)”。因此,自那天以来,该单元的结构是几乎相同的三支球队。交互式机器人团队(RI)专门研究人类机器人相互作用的研究和为人类利益而开发评估设备。他的科学主题是对互动的生物力学分析,行为和情感的评估,对人的帮助和流动性的评估,包括主要是对残疾人的人以及命令主题,在阻抗控制类型的特定方法中集成了命令主题。该团队中开发的应用符合社会问题,例如电动矫形器或假体的设计或功能康复。高级系统(ISA)团队的仪器对复杂系统的行为的表征感兴趣,该行为(称为高级系统)结合了机械,电子,光学和控制元素。它的科学主题是建模和多种选择,多尺度建模以及通过光学方式传输信息。在“未来行业”或汽车或太空部门的概念下,该团队中开发的申请主要对工业问题做出响应。团队团队智能和协作机器人系统(SYMRIC)对自我和机器人设备的开发感兴趣。他的科学主题是系统的设计和控制,特别是交互式系统,多物理模拟,知识表示和人工智能。该团队在该团队中开发的应用既应对社会和工业问题,例如互动无人机的设计或改善河流潮汐涡轮机或人形机器人的性能的贡献。LISV部门的历史和地理位置是一个接待团队,EA 4048,位于凡尔赛大学圣昆汀·恩维尔斯大学(UVSQ)本身,本身是在巴黎 - 萨克莱大学集成的。副研究人员是私人高等教育机构(ISEP)的个人。本单元来自2006年的合并,来自三个单元:LIRIS(CNRS-FRE 2508),其研究的重点是机器人技术和纳米技术,LRV(EA 3645)的研究还以机器人技术为中心,以及Lema(CNRS-FRE 2481)的研究,其研究侧重于材料和行为。迄今为止,该单位有23位UVSQ的教师研究人员(EC)和一名副研究人员,其中12名是HDR,还有5名研究支持人员(BY)。UVSQ的EC在CNU的第60和61节中非常高,并且第62、63和27节的范围较小。,他们的一半是依附于Vélizy-Rambouillet的IUT,本身位于两个地点:Vélizy-Villacoublay校园和Rambouillet的校园。对于另一半,它们隶属于位于Mantes-en-Yvelines校园的Mantes的IUT,位于Mantes-en-Yvelines校园的Isty工程学校,或位于Vélizy-Villaclay-Villaclay校园的UFF Sciences的校园。
摘要 — 现在,物联网应用需要增强识别和自适应等功能。虽然物联网节点功耗是这些应用的主要关注点,但由于通过无线网络连续传输传感器或图像数据,基于云的处理变得难以为继。因此,应在物联网节点中集成优化的 ML 功能和数据传输。此外,物联网应用在零星数据记录和耗能数据处理(例如图像分类)之间左右为难。因此,节点的多功能性是解决这种多样化能源和处理需求的关键。本文介绍了 SamurAI,这是一种多功能物联网节点,它通过利用两个片上子系统来弥补处理和能源方面的差距:低功耗、无时钟、事件驱动的始终响应 (AR) 部分和节能的按需 (OD) 部分。 AR 包含一个 1.7MOPS 事件驱动的异步唤醒控制器 (WuC),唤醒时间为 207ns,针对零星计算进行了优化,而 OD 结合了深度睡眠 RISC-V CPU 和 1.3TOPS/W 机器学习 (ML),可执行高达 36GOPS 的更复杂任务。这种架构分区实现了同类最佳的多功能性指标,例如峰值性能与空闲功率比。在应用分类场景中,它展示了系统功率增益,与基于云的处理相比高达 3.5 倍,从而延长了电池寿命。
方向性和强度,表示为𝐶1𝑒 -𝑖𝑘⃗0𝜌⃗⃗1 |𝑎⟩和𝐶2𝑒 -𝑖𝑘⃗ -0 𝜌⃗⃗2 |𝑟⟩。(c)metasurface的示意图
Lummus 将担任酚醛树脂技术的独家授权方,其产品范围从异丙苯到环己酮肟。两家公司还将在工程设计、营销和授权方面展开合作,并为这两种工艺提供专有催化剂和设备。 Lummus Technology 先进材料和能源解决方案首席商务官 Romain Lemoine 表示:“我们与 Versalis 建立了牢固的合作伙伴关系,这份协议加强了我们共同的承诺,即为客户提供可提高效率、可靠性和可持续性的技术。” “增加这些技术将加强我们在酚醛树脂价值链中的竞争地位,并使我们能够为客户提供更完整的端到端解决方案,涵盖纺织品、塑料和其他主要市场。” Versalis 研发、授权和项目开发主管 Fabio Assandri 表示:“我们将继续专注于开发我们的专有技术,以用于可能的新应用和市场。扩大与 Lummus 的合作伙伴关系将加强我们在这一战略方向上的努力。” “通过此次合作,我们利用在研发和知识产权方面公认的优势,进一步增强我们在酚类价值链技术和催化剂方面的专业知识,并与合作伙伴共同扩大技术网络。”通过此次新的合作,两家公司旨在继续开发可持续的技术解决方案并最大程度地提高效率,这将有助于满足客户对可靠运营、能源效率和可持续发展目标不断变化的需求。Lummus 和 Versalis 于 2000 年代末开始合作,在碳酸二甲酯和碳酸二苯酯技术方面建立了类似的技术合作伙伴关系。
TLS 1.3。通过为用户启动的每个会话生成唯一的会话密钥,即使是单个会话密钥的折衷也不会影响除该特定键保护的特定会话中交换的数据外。知道服务器的私钥不再允许解密会话。
单元概述一般安装信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4命名。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.6 AHRI数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.7电气挂钩。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.9物理数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.9维度数据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10
摘要:环状脂肽(CLP)是具有不同生物学功能的有效次级代谢产物。芽孢杆菌菌株主要产生三个关键家族的CLP,即Iturins,风霉素和表面蛋白,每种都包含结构变体,其特征在于与脂肪酸链相关的环状肽。尽管对CLP进行了广泛的研究,但这些类似物的个别作用及其在驱动生物学活动中的比例仍在很大程度上被忽略了。在这项研究中,我们从velezensis umaf6639中纯化和化学表征了CLP变体,并对它们单独测试了它们的抗真菌和植物生长促进作用。我们分离了5个含有ITURIN A类似物的分数(从C 13到C 17),5个甲壳霉素级分(包含C 16,C 17和C 18风霉素A和C 18风霉素A和C 14,C 15,C 16,C 16和C 17 fengecin B)和5个表面菌馏分(从C 12到C 16)。我们表明,基于每种脂肪肽变体计算的生理比率,抗真菌活性和种子梯形生长促进如何依赖脂蛋白结构变体和浓度。值得注意的是,我们发现最有毒的变体是最少的,它们可能在保留生物活性的同时最小化自毒性。通过与更丰富,更积极的类似物的协同互动来实现这种平衡。此外,某些风水和表面素的变体被证明可以增加细菌种群密度和外多糖产生,对微生物竞争的关键策略,具有重大的生态影响。■简介除了促进基本知识外,我们的发现还将支持精确生物技术创新的发展,提供有针对性的解决方案来推动可持续的粮食生产和保存策略。关键词:环状脂肪肽,结构变体,类似物,芽孢杆菌,抗真菌,抗真菌,植物生长促进,生物技术,可持续农业,食品控制。
本质上,植物面临着许多不利环境所带来的挑战,例如干旱,极端温度和盐度。为应对这些缺点,植物通过积累兼容的溶质(例如溶液糖和一些游离的氨基酸)来适应非生物应激,这通常被视为在压力下保护和生存的基本策略[1]。在这些兼容的物质中,大多数糖不仅在渗透调节中起着作用,还起信号传导作用,例如葡萄糖[2-4],蔗糖[4-6]和三核-6-磷酸盐[7-9]。糖是植物中能量储存的基础和通过植物运输的基础。光合作用后代谢形成了不同类型的糖,并在整个植物的整个生命周期中发挥了许多代谢过程中起关键作用。在植物生长和发育和环境反应的过程中,糖主要充当信号分子,以调节各种生理和生化过程[10]。海藻糖是一种具有特殊的物理和化学特性的非还原二糖,在干燥和冷冻条件下具有强大的水分性能,并且可以替代生物分子表面上的结合水,以改善蛋白质和生物膜的稳定性[11,12]。海藻糖在包括细菌,酵母,真菌和藻类在内的各种生物中广泛发现,以及某些昆虫,无脊椎动物和植物[13]。本综述讨论了海藻糖在调节植物生长以及对非生物压力的反应方面的进步。海藻糖很容易通过压力诱导,刺激植物的分辨机制[14],并且在处理多种非生物胁迫(例如干旱胁迫[15,16],盐胁迫[15,17]和极端温度胁迫[18,19]中起着重要作用。