CHPE的水下部分长约197英里,将被淹没在尚普兰湖,哈德逊河,东河和哈林河中。传输线的陆上(陆地)部分,长度约为142英里,将被埋葬在现有通行权下的地下。传输线的加拿大部分将从加拿大魁北克省的Hertel Converter Station开始,并按照上述在国际边界,通过纽约州北部和纽约皇后区的上述发电,CHPE将在TDI提议的CHPE Converter Station中绑定到TDI的CHPE。CHPE转换器站将将电力从直流电流(“ DC”)转换为交流电流(“ AC”),然后连接到纽约布朗克斯县的345 kV Astoria Annex GIS变电站。
摘要:本文介绍了 SINN Power 开发的波浪能转换器 (WEC) 原型的电气系统控制。由于波浪的运动,产生的电力波动非常大,周期为几秒钟。为了能够使用这种电力,必须对其进行平滑处理。所使用的储能系统 (ESS) 是一个超级电容器组,它直接连接到直流链路。因此,直流链路电压必须根据产生的电力波动,以对电容器进行充电和放电。平滑后的电力用于通过 DC/DC 转换器为电池充电,这通常用于光伏应用。直流链路电压可以通过流过 DC/DC 转换器的电流进行控制,从而产生一个非线性控制系统,并进行稳定性分析以证明该系统安全稳定地运行。给出了在典型海况下对原型的测量结果,结果与模拟结果相符。采用所提出的控制系统,可以保证平稳的功率输出。
该课程将集中于基本概念,以及有关重组DNA技术及其在生物医学领域中的使用。此外,这些知识将应用于与使用核酸操纵的主要酶有关的实验室活动。获得的结果将通过软件分析。会议:1)04.02。2025-课程(3小时-H.14.30-17.30):重组DNA技术的应用主要领域。酶有助于操纵DNA。克隆工具:用于生产重组蛋白的质粒载体的结构和演变。2)06.02.2025-实验室(3小时 - 14:30-17:30):核酸,限制性酶和限制图的提取和操纵技术。分享经验。
心律不齐包括以异常心律为特征的一系列疾病,全球影响数百万,并显着促进了发病率和死亡率。本综述对当前的实践和新兴疗法进行了全面分析,以涵盖其定义,分类,流行病学以及有效管理的至关重要性。它探讨了各种心律不齐的病理生理学,包括心律不齐的机制,例如重新进入,自动化和触发活性。评论详细介绍了最新的诊断工具,包括ECG,Holter监测和电生理学研究,并讨论了不同心律不齐的临床表现,从室内到心室类型和胸骨心律不齐。我们检查了当前的药理和非药物治疗策略,例如抗心律失常药物,导管消融和装置治疗,突出了它们的功效和局限性。此外,该评论还深入研究了新兴疗法,包括先进的导管消融技术,新型的抗心律失常剂,基因疗法以及创新的设备技术,例如无铅的起搏器和皮下植入式心脏抗性心脏verter虫 - 抗逆转录病毒剂(ICDS)。讨论了包括儿科,老年和孕妇在内的不同人群中心律不齐的特殊考虑。此外,该评论探讨了心律不齐管理的未来方向,强调个性化医学,人工智能应用以及先进技术在诊断和治疗中的整合。通过综合当前的知识和前景,本综述旨在增强理解和促进该领域的进步,最终改善心律不齐的患者结局。
摘要:本研究提出了一种设计电力电子转换器的方法,称为“面向制造的自动设计”(ADFM)。该方法建议使用标准化转换器单元创建电源转换器阵列 (PCA)。该方法受到微电子集成电路设计流程、电力电子构建块和多单元转换器的极大启发。为了实现所需的电压/电流规格,PCA 转换级由多个转换标准单元 (CSC) 串联和/或并联组装而成。ADFM 使用基于数据的模型来模拟 PCA 的行为,计算工作量极小。这些模型需要一种特殊的特性描述方法来最大限度地增加知识量,同时最大限度地减少数据量。这种方法包括制定实验计划以选择包含有关 PCA 技术最多信息的相关测量,构建能够自动获取数据的实验装置,并使用统计学习来训练能够产生精确预测的模型。本研究在九个不同的 PCA 中进行了超过 210 小时的测试,以便将数据收集到统计模型中。这些模型预测了几种 PCA 的效率和转换器温度,并将准确度与实际测量值进行了比较。最后,使用这些模型比较了特定电池充电应用中 PCA 的性能。
摘要 动力输出装置 (PTO) 是波浪能转换不可或缺的一部分,其设计过程并非易事。更好的 PTO 以及为各种应用选择和设计 PTO 架构的更好流程将有利于帮助为蓝色经济提供动力的设备,因为它们可以减少在 PTO 设计上花费的时间和金钱,并提高这些设备的整体能量捕获性能。本文记录了小型浪涌型波浪能转换器 (WEC) 的 PTO 选择过程,旨在为未来的 PTO 选择过程提供参考。在 WEC-Sim 中评估了三种 PTO 架构:液压止回阀 PTO、液压主动阀 PTO 和直接电动 PTO。构建了每个 PTO 的简单模型。由于最初没有小型设备的模型,因此在大型设备上模拟 PTO。使用弗劳德缩放法缩小结果,并与直接模拟小规模模型的结果进行比较。由于这项工作尚处于设计阶段的早期,需要对 PTO 选项进行粗略研究,因此我们做出了严格的假设。具体而言,我们将研究控制的有效性以及能量转换的效率。但是,能量捕获只是考虑的一部分;在选择 PTO 时还需要考虑物流问题。例如,大型 WEC 的组件非常大且昂贵,因此定制 PTO 组件可能有意义,但小型 WEC 将从现成的可用性中受益,因为定制成本将是小规模部署总资本成本的很大一部分。潜水式现成组件对于液压 PTO 来说更容易采购。由于高效的控制、高效的能量转换以及海洋级组件的可用性,为这种小型浪涌型 WEC 选择了主动阀液压 PTO。
摘要 ABB 露天采矿部门提出了一种现代化的解决方案,用于改造铲式挖掘机的电力驱动和自动化系统。该解决方案基于 10 多年的变速驱动应用经验,以及德国和其他一些国家/地区的许多交流驱动参考项目。这里介绍的项目涉及 Bucyrus-Erie 295BII 铲式挖掘机,是与墨西哥的一家铁矿(由 Peña Colorada 公司所有)合作开发的,是 IGBT 技术交流驱动在这种类型的挖掘机上的首次应用之一。所有主驱动器都配备了模块化结构的变频器。安装的开关设备经过特殊测试,以适应非常恶劣的采矿环境。改造涵盖电机、变流器系统、驱动控制和诊断工具。电机已完全检修,具有高电气强度的绕组。变流器系统为标准重型类型,并已针对该项目进行了特别调整。功能强大的 AC 80 Advant 控制器已集成到现有设备中,并且已创建了实用的人机界面以用于诊断目的。调试两周后,该设备又进行了 10 天的试运行,并且自 1999 年 9 月以来一直处于永久运行状态。客户特别强调挖掘机的高可用性,这需要高效的服务系统。ABB 拥有当地服务机构和制造商热线,全年每天 24 小时提供服务。节省成本 任务是安装具有最佳效率的最先进的驱动系统。带有 IGBT 变频器和鼠笼式电动机的交流驱动器可满足该要求。驱动系统的总效率可达到约 93.5%,即电动机(95%)和变频器(98%)的单独效率之和。与旧系统相比,这代表着可观的节能效果。系统性能 ABB 是唯一一家提供低压变频器的供应商,其范围广泛,从 2.2 到 4300 kW,电压为 380 – 830 V。变频器的尺寸可承受重载范围内的极高过载,这对于铲式挖掘机来说是一项特殊的资产。工作周期(加速速度)甚至可以进一步优化,这取决于机器机械部件的状况和极限。标准版本设计用于以下过载: 150% 负载工作周期(每 240 秒 60 秒) 200% 负载工作周期(每 50 秒 10 秒) 另一个特点是 ABB 的 DTC(直接扭矩控制),它提供 16 µs 的非常快的控制周期,并且即使在满载铲车的情况下也能产生高加速度。