T 1 态。对于三重态,CCSD(T) 和 CASSCF 的结果大致相同,CCSD 的结果要差得多(图 S1b)。在分而治之的 q-UCCSD 方法中加入自旋翻转似乎是必不可少的,这导致垂直激发能量相对于 CASSCF 提高了约 1.2 eV。由于三重态的 HF 参考是 |11 20>(平面外三重态,平面内单重态),因此自旋翻转允许的 q-UCCSD 的优越性能的一个可能解释是它可以访问 |20 11> 配置(平面外单重态,平面内三重态),这对整体波函数有重要贡献(参见正文中的图 4a)。特别值得注意的是,带有自旋翻转的 q-UCCSD 方法找到了与 CASSCF 相同的最小值,并且总体上比 CCSD 产生了更好的结果。由于起点不佳,零 BLA 几何仍然很困难,尽管这种电子状态比 S0(一个 π 系统中四个近简并自旋轨道中的两个电子)的病态性要小。
摘要:蛋白质动力学和功能与发生的能量流有很强的联系。肌红蛋白(MB)及其突变是研究分子水平上振动能传递(VET)过程的理想系统。使用色氨酸(TRP)探针在不同的MB位置引入的抗stokes紫外线共振拉曼研究通过氨基酸替代提出,这表明兽医的量取决于相对于血红素组的TRP探针的位置。受到这项实验工作的启发,我们探索了非共价π相互作用的强度,以及最初由局部振动模式分析(LMA)与铁在Aquotem-MB中结合的轴向和远端配体的共价相互作用,最初是由Konkoli和Cremer开发的。研究了两组非共价相互作用:(1)水配体和TRP环之间的相互作用,以及(2)TRP与血红素基团的卟啉环之间的相互作用。我们通过特殊的局部模式力常数评估了这些非共价相互作用的强度。使用气相和QM/MM计算,研究了基态下的各种TRP模型的水结合的水结合的MB蛋白(总共6个)。我们的结果揭示了兽医确实取决于TRP探针相对于血红素组的位置,也取决于远端组氨酸的互变异群的性质。他们提供了有关如何评估利用LMA的蛋白质中非共价π相互作用以及如何使用这些数据探索兽医的新准则,更通常是蛋白质动力学和功能。1 - 3■引言肌球蛋白(MB)是球蛋白超级家族的杰出成员,在心脏和骨骼肌的众多生理功能中具有重要作用,对于脊椎动物,它负责氧气的储存。
1 引言随着全球经济的快速发展,人们对资源的需求急剧增加,浅部矿产资源严重匮乏,矿产资源逐渐向深部开发迈进,据统计,我国部分矿山开采深度已超过1 km[1,2],深部资源开发将成为常态[3]。深部岩石爆破对施工环境的影响也引起了人们的重视,特别是爆破地震波冲击引起的爆破震动,往往会对周边环境造成影响[4–7]。根据我国《爆破安全规程》[8],爆破施工作业应在安全允许距离外进行,安全允许距离是根据爆破振动速度和地层条件确定的。随着现代化进程的加快,提高土地利用率尤为重要,确定正确的安全允许距离不仅有利于周边环境的安全
在第一区,游客将穿越海洋的不同层次,通过不断变化的色谱展示海洋生物,其中包括令人着迷的海洋生物发光现象。在第二区,游客可以通过 X 射线和超声波技术观察海洋生物的内部和解剖结构。进入第三区“秘密海景”,游客将发现壮丽的海带森林和珊瑚礁,这里生活着各种各样的动物。最后,在第四区,VibranSEA 展示了“时间与潮汐”,这是与四位当地艺术家合作创作的一系列发人深省的艺术装置。他们的作品既崇敬海洋,又哀叹海洋的现状,敦促游客反思环境保护和可持续实践的重要性。
数百名公民领袖、商界领袖、运动组织者和活动家齐心协力,产生了令人难以置信的协同效应,当然有时也会出现矛盾点。现实生活中存在矛盾,需要理解的是,价值观的统一并不意味着思想的一致。虽然报告试图总结每个小组委员会中多数人的结论和建议,但应该注意的是,一些个人立场可能没有反映出来,因为它们与多数人的观点不同,因此不应假定每个参与者对这里反映的每个问题都意见一致。每个小组委员会报告的“要搭建的桥梁”部分尊重观点的分歧。它旨在创造机会继续组织社会变革,深化社区参与,并在不同的、有时是对立的观点之间搭建桥梁。
摘要。挑战与自然资源的消耗,自然风光,极端天气条件或人口过多一样严重,需要智能解决方案,尤其是在建筑中。本文回顾了目前在民用结构中应用或开发的基于智能材料的技术,重点是智能材料用于致动或传感。给出了智能材料的定义和分类后,研究的材料(即压电材料,记忆材料,磁性流体)用于建筑和土木工程中的应用。尽管某些材料在应用方面已经非常有利,但另一些材料仍然需要对现实世界的建筑应用进行进一步研究。应在不久的将来通过系统的研究工作来合并这项审查。
影响无人机监视系统所捕获图像质量的最关键因素之一是从飞机传递到万向架的振动。无人机中使用的万向架是必不可少的设备,它可以稳定而准确地固定住摄像机并将其指向所需的方向。在本文的范围内,为微型无人机中使用的双轴光电万向架进行了被动隔振系统设计。通过在不同方法中选择弹簧阻尼器系统,使用分析方法进行了在单轴上隔离平台谐波振动的设计。使用分析方法创建了沿单轴隔离平台谐波振动的设计。此外,包含该减震系统的部件“Pan Yoke”采用计算机辅助设计程序进行设计,并使用 Ansys 模态分析检查固有频率值。已确定从飞行器传递到万向架的振动频率和设计部件的固有频率彼此接近,约为 200 Hz。通过各种设计更改和拓扑优化对该部件的固有频率值进行了优化,以防止部件发生共振。
2023 年 6 月 22 日 感谢您给我机会就 HR 2997《克利夫顿机遇,实现充满活力的经济收益 (CONVEY) 法案》作证。该法案指示土地管理局 (BLM) 将位于科罗拉多州克利夫顿附近的约 31 英亩联邦土地转让给科罗拉多州梅萨县。作为一项政策,BLM 支持与州和地方政府合作解决土地保有权和土地转让问题,以推进公共政策目标。HR 2997 指示以公平市场价值转让 BLM 确定可能适合处置的地块,BLM 支持该法案。背景 BLM 管理着 2.45 亿英亩公共土地,主要位于西部,其中 830 万英亩位于科罗拉多州。科罗拉多州的公共土地是该州经济的重要贡献者,许多科罗拉多州社区依靠健康的公共土地来维持生计。梅萨县也不例外,该县位于科罗拉多州西部,靠近犹他州边境,拥有大约 155,000 名居民。联邦土地占该县土地面积的 73%,其中大部分联邦土地由 BLM 管理。县城大章克申位于大峡谷中心科罗拉多河与甘尼森河交汇处附近。克利夫顿北临 70 号州际公路,西临大章克申。大峡谷垦荒工程 1907 年,大峡谷垦荒工程的建设获得内政部批准。垦务局 (BOR),当时称为美国垦务局,负责向大峡谷的农田和果园供应灌溉用水。大峡谷垦荒项目是 1902 年 6 月 17 日《垦荒法》通过后,首批从定居点撤出土地用于项目建设的六个项目之一。自 1917 年首次供水以来,大峡谷垦荒项目已为约 33,368 英亩的土地提供了灌溉用水,并为约 8,600 英亩的肥沃土地提供了补充水。该项目的工程包括一座引水坝、一座发电厂、两座泵站和两座运河系统,总长 90.1 英里。