(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年3月21日发布。 https://doi.org/10.1101/2023.03.20.533577 doi:Biorxiv Preprint
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
航空弹性振动是由空气动力和风力涡轮叶片的结构动力学之间的复杂相互作用引起的,是导致疲劳,结构损伤,效率降低以及风力涡轮机系统中维护成本提高的主要原因。解决此问题对于增强风力涡轮机的运行性能,耐用性和寿命至关重要,这使得振动控制成为可再生能源行业的关键重点。本文研究了同步开关阻尼(SSD)模态方法,这是一种非线性控制技术,专门为其通过靶向和抑制不需要的振动模式而有效减轻航空弹性振动的能力。通过将压电组件与刀片运动和谐的指定电路同步,SSD模态方法可提供精确而适应性的振动控制。我们的研究证明了半活动模态SSD方法的有效性,从而降低了叶片振动的30.42%。这种实质性的减少不仅增强了整体性能,还可以增强风力涡轮机叶片的寿命,从而在振动控制策略方面取得了重大进步,并有助于开发更可靠和有效的风能系统。
目的是在所有情况下都符合以下原则。如果出现本文件中的程序似乎不符合以下原则的情况,则可以通过咨询交通噪音专家来改变程序。请注意,使用本指南中的程序并不能保证始终符合原则,如果有疑问,则原则而不是程序优先。
基于十多年的无线体验,艾默生的新AMS无线振动监视器是当今可用的最先进的设备。它通过自组织的无线网络网络提供完整的振动数据。它为操作和维护人员提供了有关机械健康的丰富信息。总体振动,PeakVue™测量值和温度读数可以轻松地集成到任何控制系统或植物史学家中,而诊断数据可以由AMS设备管理器和AMS Machine Works Works软件显示,并通过AMS Optics Asset资产性能平台广播。对于高级诊断,可以将高分辨率数据传递到AMS机器工程软件以进行详细分析。
属性,对给定频率征集的响应与系统的内在特性密切相关,看来最强的响应与结构的共振有关,即没有来源的波动方程的解决方案,在自由空间中不再与特定问题有关。看来,这些解决方案是相应特定操作员的本征码,这些本征码的集合是一个非常适合开发具有给定源的其他解决方案的非常适合的基础。因此,确定这些本征码对于物理理解和实际计算都非常有用。还可以预期,这些模式的小子集可以包含足够的信息来解决一些问题,并构成了有效的降低模型。一个引人入胜且流行的共鸣的例子是塔科马窄桥的崩溃,但由于现象更加复杂,这是造成的[10]。最近的案件是盖茨黑德千禧桥在行人在开幕日经历了令人震惊的摇摆动作和伏尔加格勒的伏尔加桥[15]。新方法旨在防止这些灾难性的振动损害由于共振而发生。相反,共振可用于设计和研究新型的超材料和光子/语音晶体[46]。模式的另一个例子是波导中的传播模式,例如光纤。在2000年代初期,显微结构化的光纤出现了。传播常数)。最初的想法是使用光子晶体纤维的带隙,但很快就显然是在覆层中有限的周期性孔足以获得良好的指导性能[59]。一个基本模型是考虑在较高的折射率中考虑低折射率孔,足够大,可以被视为无限制。在这种情况下,没有真正的繁殖模式,而是与复杂特征值相关的泄漏模式(即这些模式确实遭受了损失,但足够小以保持出色的指导性能。更普遍地,光子学中使用的材料由复杂的介电渗透性表示,其中虚部对应于损失。光频率下的所有经典光学材料都是分散的,即频率依赖性,因此是根据因果关系原理引起的Kramers-Kronig关系[45]的耗散性的。
摘要:这项研究研究了由于振动暴露而导致两轮电动汽车电池组的结构保护水平。这项研究包括两个阶段:首先,对固定装置和电池组中的谐振频率进行了探索,然后使用UN ECE R136测试配置文件进行振动测试,其中包括7-200 Hz的频率范围以及10-80 m/s²之间的频率范围。这些测试旨在模仿典型操作过程中两轮电动电池经历的振动暴露。振动周期重复七次,每个周期后,对电池组结构进行评估,使用72伏20 AH Li-Ion电动摩托车电池组作为测试样品。结果表明,电池组的共振在28 Hz时产生的共振,导致加速扩增超过了所施加的振动暴露的40%,总力量高达226.95 n,电池结构压力为226.95 n。共振严重损害了所有四个弹性基础,而BMS支架支撑上电池结构。这些发现强调了对电池组结构进行进一步研究的必要方法,用于在所有测试条件下能够承受共鸣的两轮电动汽车,从而确保了电池组的安全性和耐用性。
发布此 RFI 仅作为技术探索和信息收集的手段,旨在确定和识别南非航空航天和工程工业部门的能力。此 RFI 并非对潜在承包商进行资格预审的邀请,参与纯属自愿。 2. 背景 此 SANSA 项目旨在将 Houwteq 振动测试设施升级到国家航天工业能够专业满足其未来日益增长的开发测试、鉴定和有时验收主要航天设备和系统的需求的状态。发布此 RFI 仅用于信息收集和规划目的;此 RFI 不构成正式的提案征集。请注意,对此 RFI 的回复将严格保密,仅用于未来支持南非航天工程工业部门的主题开发。 3. 所需信息 所有信息应按照本文件中提供的说明提交。不接受机密回复。SANSA 要求回复者评估此 RFI 附件 A 中规定的要求,并提交他们能够提供的解决方案系统提案。提案应解决技术解决方案的概念和范围、实施计划和时间表、风险方面、所做的假设、预期的客户提供的物品和接口、长交货期物品以及任何相关的 SHEQ 方面。