b) ALMM 将根据法律仅适用于由政府赞助/补贴的项目。ALMM 将适用于政府或其机构采购电力供自己消费或通过配电公司分配给人民。ALMM 将适用于受补贴的太阳能光伏屋顶和 PM KUSUM。ALMM 不适用于在开放获取下设立或由私人团体控制的项目。换句话说,ALMM 不适用于自行设立发电设施的人。
摘要这项研究的主要目的是通过开发包括脑部计算机界面(BCI)和客户端Vidinexus的互动屏幕在内的原型来探索以改善博物馆访问者的体验和参与的选项。这是通过遵循重点关注研究的三个不同方面的方法来完成的;博物馆和艺术,BCI和原型。前两个方面是背景文献研究的重点。这些发现用于指导原型开发的创作过程。系统的原型,包括交互式测验,它根据由EEG设备测量的选择和参与水平与访问者相匹配。该原型是在研究的构想,规范和实现阶段创建的;并在评估阶段进行了测试。
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
我们提出了intincavatar,这是一种新的方法,是一种从单眼视频中照亮的,包括几何形状,反照率,材料和环境的内在特性。基于人类的神经渲染的最新进展已使来自单眼视频的穿着人类的高质量几何形状和外观重建。然而,这些方法烘烤了内在特性,例如反照率,材料和环境照明成一个单一的纠缠神经表示。另一方面,只有少数作品可以解决估计单眼视频中穿衣人类的几何形状和分离的外观特性的问题。,由于通过学习的MLP对次要阴影效应的近似值,他们通常会获得有限的质量和分离。在这项工作中,我们建议通过蒙特卡罗射线跟踪明确地对次级阴影效应进行建模。我们将衣服的人体的渲染过程建模为体积散射过程,并将射线跟踪与人体的作用相结合。我们的方法可以从单眼视频中恢复服装人类的高质量地理,反照率,材料和照明特性,而无需使用地面真相材料进行监督的预训练。fur-hoverore,因为我们明确地对体积散射过程和射线追踪进行了建模,所以我们的模型自然而然地形成了一般 -
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
当前的视频异常检测(VAD)方法本质上仅限于封闭设置的设置,并且可能在开放世界应用程序中遇到困难,在培训期间,测试数据中可能存在异常类别。最近的一些研究试图解决更现实的开放式VAD,该研究旨在解散视为异常和正常视频的看不见异常。但是,尽管这种能力对于构建更明智的视频监视系统至关重要,但这种设置着重于预测框架异常得分,没有识别异常类别的能力。本文进一步迈出了一步,并探讨了开放词汇视频异常检测(OVVAD),我们的目的是利用预训练的大型模型来检测和cate-可见和看不见的异常。为此,我们提出了一个模型,该模型将OVVAD分解为两个相互构成的任务 - 类不足的检测和特定于类的分类 - 并共同优化了这两个任务。特别是,我们设计了一个语义知识注入模块,以从大语言模型中引入语义知识以进行检测任务,并设计一种新型的异常合成模块,以在大型视觉生成模型的帮助下生成伪异常视频,以实现分类任务。这些语义知识和综合异常大大扩展了我们模型在检测和分类各种可见和看不见的异常方面的能力。对三个广泛使用的基准测试的实验实验实现了我们的模型在OVVAD任务上实现了最新的性能。
在两项研究中,用户都成功地养活了自己的饭菜。在第一项研究中,机器人获得了约80%精度的主菜,另一项研究中的用户发现这是成功的阈值。在第二次研究中,房屋的各种环境和环境(Ko)可能在低光或在床上工作时在饮食中吃饭 - 使系统的默认功能保持不变。但研究人员将该系统设计为可定制的,因此KO能够控制机器人并仍然为自己喂食所有餐点。
摘要 - 尽管在边缘应用中广泛采用了视力传感器,例如监视,视频数据的传输会消耗大量频谱资源。Semantic Communication(SC)通过在语义层面提取和压缩信息,提供传输数据的准确性和相关性,同时大大减少传输信息的量,从而提供了解决方案。但是,由于缺乏感应能力,传统的SC方法由于在边缘视频中反复传输静态帧而面临效率低下,这会导致频谱效率低下。为了应对这一挑战,我们建议使用计算机视觉传感(SCCV)框架进行EDGE视频传输的SC。框架首先引入了压缩比(CR)自适应SC(CRSC)模型,能够根据帧是静态还是动态的,能够调整CR,并有效地保存光谱资源。此外,我们实施了一个对象检测和语义分割模型启用的传感(OSMS)方案,该方案可以智能地感知场景中的变化并通过封闭式分析评估每个帧的重要性。因此,OSMS方案根据实时感应结果为CRSC模型提供CR提示。此外,CRSC和OSM都设计为轻量级型号,可确保与实用边缘应用中常用的资源受限传感器的兼容性。实验模拟验证了所提出的SCCVS框架的有效性,证明了其提高传输效率的能力而无需牺牲关键的语义信息。
在许多应用程序中,我们需要生成一个序列长度比原始视频模型支持的长度更长的视频。为了实现这一目标,我们首先将长视频分为长度L的重叠块,在连续的块之间具有一个框架重叠,并以自动回归方式顺序生成每个块的框架。具体来说,对于第一个块,我们遵循Sec中描述的推理管道。主纸的4.5预测RGB视频。 然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。 要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。 具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。 我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。 我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。 然后将优化目标定义为:主纸的4.5预测RGB视频。然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。然后将优化目标定义为:
