基于锚点的大规模多视图聚类因其在处理海量数据集方面的有效性而引起了广泛关注。然而,当前的方法主要通过探索锚点图或投影矩阵之间的全局相关性来寻找用于聚类的共识嵌入特征。在本文中,我们提出了一种简单而有效的可扩展多视图张量聚类(S 2 MVTC)方法,我们的重点是学习视图内和跨视图的嵌入特征的相关性。具体而言,我们首先通过将不同视图的嵌入特征堆叠到张量中并旋转它来构造嵌入特征张量。此外,我们构建了一种新颖的张量低频近似(TLFA)算子,它将图相似性结合到嵌入特征学习中,有效地实现不同视图内嵌入特征的平滑表示。此外,对嵌入特征应用共识约束以确保视图间语义一致性。在六个大规模多视图数据集上的实验结果表明,S 2 MVTC 在聚类性能和 CPU 执行时间方面明显优于最先进的算法,尤其是在处理海量数据时。S 2 MVTC 的代码已公开发布在 https://github.com/longzhen520/S2MVTC。
所以。 基辅语文 (Comlda. - an~ #* me ole Hadooer a, idevofo &F 66 ON&& 东南亚分析报告 RYNAF OASD(系统分析)哈姆雷特评估系统 SEA 分析报告 SE Asta 空中作战 VC/NVA 东南亚部署平定 EAsaLasUs/ostutn 20. 摘要 (Ceinm.a 40 mvm* Odd Un49640 =111401"I 6F 400d MOOe N* 这套 12 卷套装包括东南亚“分析报告”第 50 期系列中印刷的每一篇文章。SEA 分析报告对越南战争活动进行了逐月分析,包括部队和战斗力、VC/NV 行动、盟军地面、海军和空中行动、ILVNAF、伤亡和损失、人口安全、战争成本和通货膨胀以及建设和港口在南越的行动。
人类的视野。这种能力不仅对于诸如对象操纵和导航之类的实践日常任务至关重要,而且在培养人类创造力方面起着关键作用,使我们能够以深度,幽默感和沉浸感进行设想和制作对象。在本文中,我们重新审视了视图综合问题并提出:我们如何学习一般的3D表示以促进可扩展的视图综合?我们试图从以下两个观察结果中调查这个问题:i)到目前为止,目前的最新进展主要集中在训练速度和/或提高效率上[12,18,18,31,48]。值得注意的是,这些进步都共同依赖于体积渲染以进行场景优化。因此,所有这些视图合成方法固有地是场景特定的,再加上全局3D空间坐标。相比之下,我们主张一个范式移动,其中3D表示仅依赖场景颜色和几何形状,学习隐式表示无需地面真相3D几何形状,同时也从任何特定坐标系统中具有重要的独立性。这种区别对于实现可扩展性至关重要,以超越场景指编码所施加的约束。ii)本质上,视图合成更适合作为有条件的生成建模问题,类似于生成图像中的图像[25,60]。随着可用信息的增加,生成的场景变得更加限制,逐渐收敛于地面真相表示。仅给出一组稀疏的参考视图时,所需的模型应提供多个合理的预测,并利用生成表述中的固有随机性,并从自然图像统计信息和从其他图像和对象中学到的语义先验中获取见解。值得注意的是,现有的3D生成模型通常仅支持单个参考视图[20 - 23,44]。我们认为,更理想的生成配方应具有不同级别的输入信息。在这些见解的基础上,我们引入了Eschernet,这是一种图像到图像的条件扩散模型,用于视图合成。Eschernet利用了使用Dot-Product自我注意力的变压器体系结构[51],以捕获参考对目标和目标对目标视图一致性之间的复杂关系。Eschernet中的一个关键创新是相机位置编码(CAPE)的设计,专门代表4个DOF(以对象)和6个DOF相机姿势。这种编码的速率空间结构进入令牌,使模型能够仅基于其相对摄像机的转换来计算查询和密钥之间的自我注意事项。总而言之,Eschernet表现出以下非凡的特征:•一致性:埃舍内特固有地整合了视图的固定性,这要归功于相机位置编码的设计,从而鼓励了对目标对目标和目标视图视图的一致性。
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
我们介绍多视图的细心上下文化(MVACON),这是一种简单而有效的方法,用于改善基于查询的多视图3D(MV3D)对象检测中的2D- TO-3D功能。尽管在基于查询的MV3D对象检测的领域取得了显着的进展,但先前的艺术通常会因高分辨率的高分辨率2D特征而缺乏基于密集的注意力提升的高分辨率2D特征,或者由于高计算成本,或者由于3D Queries的高度密集地接地不足,无法以3D Queries的高度质量为基于稀疏注意的多级2D功能。我们提出的MVACON使用代表密集但计算稀疏的细心特征连续化方案击中了两只鸟,该方案对特定的2d到3d feleture提升方法不可知。在实验中,使用BEVFormer及其最近的3D变形注意(DFA3D)变体以及PETR对纳斯曲霉基准进行了彻底的测试,并显示出一致的检测性能提高,尤其是在位置,方向和VELOCITY PRECTICTAR中提高了一致的检测性能。还可以在Waymo-Mini基准测试器上进行测试,并具有类似的改进。我们在定性和定量上表明,基于全局群集的上下文有效地编码了MV3D检测的密集场景级上下文。我们提出的MVA-CON的有希望的结果加强了计算机视觉中的格言 - “(contectu-alsized)特征事项”。
量子汉密尔顿复杂性的目的[17,42]是研究当地汉密尔顿人所描述的物理模型的计算能力,其动态及其特征状态的复杂特性,以及了解确定这些特性的综合复杂性。许多汉密尔顿人在量子构成方面都是普遍的[13],而其他汉密尔顿人则认为更简单,但仍然很难通过经典计算进行经典研究[7]或什至有效地模拟[27]。有一个悠久的历史,即寻找最简单的可能性,最接近现实,有效地实现,并且可以通过通用动力学来实现与当地汉密尔顿人的量子计算。对相互作用,局部性和几何限制的类型和强度的限制进行了研究,例如在参考文献中。[13,20,26,37,39,40]。对计算的普遍性的思考通常与提出复杂性问题(例如确定确定这些哈密顿人特征性特性的强硬特性)的问题息息相关。从量子控制理论的角度来看这一点为我们提供了一个有趣的观察。对子系统的额外控制水平可能会导致状态发生的可能性或复杂性问题的困难。我们已经使用DQC1(“一个清洁量子”)模型[30,36]看到了这一点,其单个可完全定量(清洁)量子的单个量子比经典计算产生了量子优势。在这项工作中,我们通过控制一个小子系统来研究收到的计算潜力。类似地,如果允许使用魔术状态,则使用有限的通用门(例如Clifford Gates [8])进行计算,以进行量子计算。使用扰动gad-有效地将系统的部分固定到特定状态,使我们能够从更简单的人中建立复杂的有效汉密尔顿人[24]。也已经表明,小子系统的Zeno效应测量可以赋予非普遍的通勤大门的普遍力量[10]。我们专注于一种称为固定的控件类型 - 固定
为了自主驾驶模拟,早期尝试[8,32,35]部署游戏引擎来渲染图像。它不仅需要耗时的过程来重建虚拟场景,而且还需要以低现实主义的形式产生结果。,用于新型视图Synthesis(NVS)的神经渲染技术,例如神经辐射场(NERF)[21]和3D高斯分裂(3DGS)[14],用于同步,以使照片现实主义的街道视图进行同步。当前的研究[4、10、20、23、28、39、43、47、48、51、59]主要是街道视图合成中面临的两个挑战:无界场景的重建和染色体对象的建模。尽管已经取得了令人兴奋的进度,但在现有作品中尚未很好地探索评估重建质量的关键问题。众所周知,理想的场景仿真系统应具有高质量的自由视线渲染的能力。目前的作品通常采用从vehicle捕获而在训练阶段却看不见的观点(例如图。1),同时忽略了偏离训练观点的小说观点(例如图。1)。处理这些新颖的观点时,呈现质量的降低明显降低,对现有作品的模糊和伪像,如图1。此问题归因于车辆收集的图像的固有约束视图。训练图像通常沿着车辆的行驶方向捕获,并以车辆的车道为中心。由于车辆的快速行驶速度,框架之间的超偏度有限,因此不允许对现场中的物体进行全面的多视觉观察。因此,可以从稀疏视图中将自动驾驶的街道视图综合任务理解为重建问题。
