●医疗保健提供者应确保其实践具有最新的应急人员人员计划,以适应患者的数量增加或员工缺勤。●医院医疗保健提供者应确保熟悉马里兰州紧急医疗服务系统(MIEMSS)重症监护协调中心(C4)。C4的总体目标是让患者接受“在正确的时间,正确的位置正确护理”,包括帮助医生确定需要患者时可用的医院重症监护资源。任何马里兰州医院都有需要重症监护,治疗指导或需要儿科床的患者,均可致电410-706-7797与C4联系。
基于基因组结构和复制策略的相似性,RNA病毒如今可分为“超类群”,通常涵盖动物病毒和植物病毒(Goldbach & Wellink,1988;Strauss & Strauss,1988)。这一概念也越来越多地体现在病毒分类学中;尤其是引入了分类单元“目”,将很可能拥有共同祖先的病毒科合并在一起(Mayo & Pringle,1998)。对于正链、有包膜的冠状病毒和动脉炎病毒(最近被统一归入巢病毒目,Cavanagh,1997),基于相似的多顺反子基因组结构、共同的转录和(后)翻译策略以及一系列同源复制酶结构域的保守性(den Boon et al.,1991),它们之间建立了密切的系统发育关系。因此,有可能勾勒出nidovirus生命周期的共同轮廓(图1)(详见Lai & Cavanagh,1997;de Vries et al.,1997;Snijder & Meulenberg,1998)。然而,在某些方面,这两个病毒家族彼此之间存在显著差异。例如,最大的冠状病毒基因组,鼠肝炎病毒(MHV),其基因组为31±5kb,约为最小动脉炎病毒基因组,即马动脉炎病毒(EAV)12±7kb RNA的两倍半。此外,这两个病毒家族的结构蛋白没有明显的相关性,导致病毒体的大小和结构存在重要差异(den Boon et al.,1991;Snijder & Spaan,1995;de Vries et al.,1997)。大多数主要的动物正链RNA病毒群体要么产生单个多聚蛋白,要么产生单独的非结构和结构前体多肽,这些多肽随后被病毒编码或宿主编码的蛋白酶裂解,产生功能性亚基(Dougherty & Semler, 1993)。相比之下,在基因组3′-近端区域编码的nido病毒结构蛋白,
系统发育分析表明,循环菌株属于东南部 - 非洲(ECSA)基因型内的一个进化枝。通过将这些菌株与先前报道的印度序列进行比较,我们确定了E1区域中的显着突变,例如S72N,K211E,M269V,D284E,D284E,A315V和I317V,以前从印度中部和新德里发现了菌株。突变,例如M31i,I54V和S105T以及先前在印度报道的A226V突变,这表明我们地区当前循环的CHIKV菌株主要通过AEDES AEGYPTI传播。相反,在2014年之前在非结构区域中观察到的突变,例如NSP2-E145D和NSP3-V376T,在我们的分离株中重新出现。这些发现增强了我们对Chikv遗传多样性的理解,描述了当地Chikv进化枝的演变及其对印度中部地区流行病学和公共卫生的影响。
文章doi:https://doi.org/10.3201/eid3104.241197 EID无法确保作者提供的补充材料的可及性。难以访问补充内容的读者应与作者联系以寻求帮助。
缺乏健康的携带者,麻疹本质上是一种可根除的疾病。到2023年,总共有82个国家通过高公开覆盖范围来消除麻疹(2)。尽管含麻疹疫苗的有效性,但免疫人员仍可能感染。这种现象已被称为疫苗接种失败。已记录了两种类型的疫苗接种故障。一级疫苗接种失败(PVF)是由于一个人未能对病毒抗原(非核对抗)产生任何体液反应的原因,并且被认为发生在5%的疫苗中(3)。次级疫苗接种失败(SVF)似乎发生在最后一次疫苗剂量后6 - 26年发生,这是由于免疫力减弱或不完全免疫力的结果。SVF发生在2%–10%的疫苗接种人员中(4)。SVF后的麻疹感染(也称为均匀的麻疹)通常比较温和(即少量咳嗽,co,结膜炎或发烧)与较低的病毒载荷有关,并且患有较低的复杂性风险(5)。这种麻疹形式被认为是由于不足但没有免疫反应的原因。陈述不同,免疫力足以减少症状和病毒复制,但不足以防止感染。柔和的症状可以根据不可靠的经典特征来识别麻疹病例。在泄漏后环境中,疫苗接种失败后的麻疹病例构成了总体病例的更高比例。在临时环境中,接种疫苗的人占麻疹病例的3%–8%,相比之下,有14%–57%的病例这种情况发生在较少的未接种人以获取感染的情况下,唯一剩下的易感人是经历疫苗接种失败的人(6)。此外,在麻疹通常不循环的环境中,接种疫苗的人不会暴露于野生病毒,因此未接受自然的助推器(7)。
1。引言一种称为Peste des Petits反刍动物(PPR)的病毒会影响小型反刍动物,主要是绵羊和山羊,但它也会感染家畜。PPR病毒(PPRV)是paramyxoviridae属的菌群的单链,非分段的RNA病毒(1)。PPRV的基因组跨越15,948个核苷酸(NT),并结构为六个开放式阅读帧(ORF)。由这些ORF编码的六种结构蛋白是聚合酶(P)或大蛋白(L),融合蛋白(F),磷酸蛋白(P),基质蛋白(M),黑凝集素蛋白(H)和核蛋白(N)。此外,非结构蛋白C和V由ORF转录单元(2)编码。通过使用部分基因序列的系统发育研究,通过系统发育研究从两种结构蛋白N或F中描述了四个谱系(3)这些PPRV的谱系分布在包括非洲,亚洲和欧洲在内的几个地理区域中(4)。所有四个PPRV谱系都存在于非洲,自1940年以来,西非国家一直局部局部病毒。当前的证据表明,谱系I病毒不再循环,因为自2001年以来就没有发现这种血统(5)。血统II主要出现在西非,尽管最近在刚果民主共和国(DRC)和坦桑尼亚报道了这一点(6)。北部和西部的北部都没有报道谱系III,尽管在科莫罗斯群岛以及东北,东部和中非都可以找到它。非洲最常见的血统IV已在15个不同的国家中记录在第15个国家中。(6)。迄今为止,它已在非洲的北部,西部,中部和东部地区进行了确定,并且正在逐渐向南移动。随着PPRV继续散布在以前未感染的地区,数以千万万的家庭小型反刍动物和野生动植物面临感染的风险。但是,在以前未感染的地区发现的PPRV感染以及被感染的国家的谱系混合物共同强调了PPR的地理和时间动态特征(7)。年度全球经济损失估计,这些损失的年度经济损失约为1.45美元,这些损失的一半,这些损失的一半,这些损失影响了非洲和一季度的ASIA。这些损失是由死亡率造成的,死亡率最高为20%,而发病率达到100%(8,9)。由于对绵羊和山羊农民的高影响力PPR,粮食和农业组织(FAO)和世界动物健康组织(以前称为OIE)已正式启动了一项全球旨在消除PPR的计划。
节肢动物传播病毒是受气候变化影响最大的人之一。面对气候和环境变化,节肢动物传播病毒感染的分布区域和疾病负担正在发生变化。这些变化对媒介传播病毒的影响是复杂的,并且取决于地理区域,并且从各种载体传播病毒中出现的疾病出现驱动因素也很少了解。环境变化可能会影响疾病生态学,因为媒介和病原体可以进入新地区,并可能适应,出现并导致新人或动物宿主的疾病负担。似乎有可能在新地区继续出现节肢动物传播病毒。因此,为了跟踪该领域的全球变化,需要在世界各地的本地研究和监视。除了新兴载体传播病毒的基因分析外,还需要有关其疾病关联和致病性能的信息。在本期特刊中,我们欢迎在不断变化的环境中介绍媒介传播感染的贡献。
5-贵金[1] Alexander,D.J。,Aldous,E.W。和Fuller。 C.M. )2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。 禽病。 41(4),329-35。 [2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。 和Lipman,D.J。 )1990(基本本地对齐搜索工具。 J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。5-贵金[1] Alexander,D.J。,Aldous,E.W。和Fuller。C.M. )2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。 禽病。 41(4),329-35。 [2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。 和Lipman,D.J。 )1990(基本本地对齐搜索工具。 J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。C.M.)2012年(长期观点:对40年纽卡斯尔疾病研究的选择性评论。禽病。41(4),329-35。[2] Altschul,S.F.,Gish,W。Miller,W。Myers,E.W。和Lipman,D.J。)1990(基本本地对齐搜索工具。J. Mol。 生物。 215(3),403-10。 [3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。J. Mol。生物。215(3),403-10。[3] Ansori,A.N。和Kharisma,V.D。 )2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。 eksakta:J。Sci。 数据肛门。 20(1),14-20。 [4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I. (2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。 PLOS ONE 11(9),E0162484。 [5] Brown,V.R。和Bevins,S.N。 (2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。 兽医。 res。 48(1),1-5。 [6] De Leeuw,O。和Peeters,B。 (1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。 J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。[3] Ansori,A.N。和Kharisma,V.D。)2020(东南亚和东亚纽卡斯尔病毒的表征:融合蛋白基因。eksakta:J。Sci。数据肛门。20(1),14-20。[4] Ayala,A.J.,Dimitrov,K.M.,Becker,C.R.,Goraichuk,I.V.,Arns,C.W.,Bolotin,V.I.(2016)野生鸟类存在疫苗衍生的纽卡斯尔病毒。PLOS ONE 11(9),E0162484。[5] Brown,V.R。和Bevins,S.N。(2017)对美国有毒纽卡斯尔病毒病毒的综述以及野生鸟类在病毒持久性和传播中的作用。兽医。res。48(1),1-5。[6] De Leeuw,O。和Peeters,B。(1999)纽卡斯尔病毒的完整核苷酸序列:在亚家族中存在新属的证据。J. Virol。 80(1),131-6。 [7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H. 病毒学531,203-18。 2017。J. Virol。80(1),131-6。[7] Dimitrov,K.M.,Ferreira,H.L.,Pantin- Jackwood,M.J.,Taylor,T.L.,Goraichuk,I.V.,I.V.,Crossley,B.M。,Killian,M.L.,M.L.,M.L.,Bergeson,N.H.病毒学531,203-18。2017。(2019)2018年至2019年加利福尼亚疫情及其相关病毒在年轻鸡和相关病毒中的致病性和传播。[8] Dimitrov,K.M。,Afonso,C.L.,Yu,Q。和Miller,P.J。纽卡斯尔疾病疫苗 -