视觉场景是自然组织的,在层次结构中,粗糙的语义递归由几个细节组成。探索这种视觉层次结构对于认识视觉元素的复杂关系至关重要,从而导致了全面的场景理解。在本文中,我们提出了一个视觉层次结构映射器(HI-MAPPER),这是一种增强对预训练的深神经网络(DNNS)结构化理解的新方法。hi-mapper通过1)通过概率密度的封装来调查视觉场景的层次结构组织; 2)学习双曲线空间中的分层关系,并具有新颖的分层对比损失。预定义的层次树通过层次结构分解和编码过程递归地与预训练的DNN的视觉特征相互作用,从而有效地识别了视觉层次结构并增强了对整个场景的识别。广泛的实验表明,Hi-Mapper显着增强了DNN的表示能力,从而改善了各种任务的性能,包括图像分类和密集的预测任务。代码可在https://github.com/kwonjunn01/hi-mapper上找到。
用于弯曲致动器应用的铂涂层磺化聚醚醚酮聚合物膜 OP-13 Anjul 使用 O-(磺酰基)羟胺进行 Rh(II) 催化的未活化烯烃的直接 NH/N-Me 氮杂环丙烷化 OP-14 Hina Kabeer 探索新型 N, O-供体烯胺配体:Cu(II)/Zn(II) 复合物的合成和深入的体外药理学分析 OP-15 Noureen Ansari 用于增强光催化应用的氧化锌纳米粒子绿色合成最新进展 OP-16 Taposi Chatterjee
投资创新 欧洲必须走在技术创新的前沿,既要促进经济增长,又要确保新技术符合欧洲价值观。虽然欧洲进行了许多伟大的研究,但推动数字革命的许多重要发展,如大数据、人工智能和网络安全,尚未得到足够的重视。欧洲需要抓住这些错失的机会,在基础研究和应用研究方面进行大量投资。Volt 希望继续联合投资计划,如“地平线欧洲”,以鼓励创新研究。与此同时,Volt 强烈支持透明的投资促进税收制度,以支持创新型中小企业的创业和创造新的就业机会。欧洲应该加强现有的技术中心,并投资于整个大陆新的专业技术中心。
临时教员人数:05 访问教员人数:03 专业:控制系统、仪器仪表、电力系统、能源系统、电机、电力电子、电气驱动、照明工程。 教授科目:理论:1. 电力系统运行与控制 2. 先进过程控制与仪器仪表。3. 采矿电气技术,4. 电气和电子测量,5. 物理系统建模与控制,6. 照明科学、工程与设计,7. 其他部门的基础电气工程。学期:1. 电工技术实验室,2. DC-II/III(PES 的先进电力系统分析和电力系统运行与控制)学期,3. 控制系统仿真实验室,4. 过程控制和仪表实验室,6. 测量实验室,8. 物理系统建模与控制实验室,9. 数值仿真和应用工具实验室,10. 电机实验室,11. 新能源和可再生能源实验室,12. DC-I(状态变量分析)学期,13. 不同部门不同科室的基础电气工程实验室,14. CSI(离散和数字系统理论和先进过程控制与仪表)的 DC-II/III 学期,15. 先进过程控制与仪表实验室,16. 先进电力系统分析实验室。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。
该策略阐明了欧洲机器人界的集体愿景。它借鉴了来自欧洲境内的多种信息来源,来自欧洲主题小组,研讨会和市场研究,从跟踪全球机器人技术的进步以及与其他协会和组织的合作。它提出了一系列建议,内容涉及公共和私人组织应如何努力确保欧洲的机器人技术在中长期内具有经济和社会影响。这些关于使欧洲产品和服务能够创造附加值的中心,同时维持欧洲强大的机器人研究和创新基础。它列出了支持吸收的案例,长期关注研究并满足从机器人的角度来支持欧洲强大的创新基础设施的基本需求。它探讨了机器人创新的途径和创新增长的方向。
通过视觉引导手部动作进行的计算机交互通常采用抽象的基于光标的反馈或不同程度真实感的虚拟手 (VH) 表示。目前尚不清楚在虚拟现实环境中更改这种视觉反馈的效果。在这项研究中,19 名健康的右撇子成年人使用四种不同类型的视觉反馈执行食指运动(“动作”)和观察运动(“观察”):简单的圆形光标 (CU)、指示手指关节位置的点光 (PL) 图案、阴影卡通手 (SH) 和逼真的 VH。使用数据手套记录手指运动,并以光学方式记录眼动追踪。我们使用功能性磁共振成像 (fMRI) 测量大脑活动。与基线相比,动作和观察条件均显示枕颞皮质中的 fMRI 信号响应更强。动作条件还会引起运动、体感、顶叶和小脑区域的双侧激活增加。对于这两种情况,带有移动手指的手部反馈(SH、VH)比 CU 或 PL 反馈导致更高的激活,特别是在早期视觉区域和枕颞皮质中。我们的结果表明,与视觉不完整的手部和抽象反馈相比,在视觉引导的手指运动过程中,皮质区域网络的募集更强。这些信息可能对研究和应用或训练相关范例中涉及人体部位的视觉引导任务的设计产生影响。
13 https://www.enecho.meti.go.jp/about/whitepaper/2021/html/1-2-2.html 14 闭环:委员会通过雄心勃勃的新循环经济一揽子计划,以提高竞争力、创造就业机会和实现可持续增长(欧盟委员会,2015 年) https://ec.europa.eu/commission/presscorner/detail/en/IP_15_6203 15 国家回收战略(美国环境保护署,2021 年) https://www.epa.gov/system/files/documents/2021-11/final-national-recycling-strategy.pdf 16 2020 年 2 月 10 日关于打击浪费和循环经济的法律(法兰西共和国,2020 年) https://www.vie-publique.fr/loi/268681-loi-10-fevrier-2020-lutte-contre-le-gaspillage-et-economie-circulaire
