尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
摘要 - 全球计算机视觉的加速发展对水果收获的估计产生了重大影响,从而提高了效率并大大减少了食物浪费。此外,这项技术在农业部门面临着显着的抵抗力和缺乏知识。本综述的目的是分析人工视力方法在预测高茎果的收获时。因此,应用了非实验性描述性设计,属于无荟萃分析的系统综述。基于定义的标准(包含和排除),从电子数据库Scopus,Scielo和Redalyc中选择了26篇开放访问文章,这些文章涉及使用VA来预测高茎水果的收获。的发现表明,大多数研究使用近红外(NIR)光谱和RGB图像处理来估计收获,分别达到95%(柑橘类水果)和75%(苹果)的平均准确性。此外,使用RGB和YOLOV3图像传感器的无人机的使用使得获得大于90%的精确度成为可能,从而实现了收获前4到6个月之间的预测。得出结论是,使用最常用的VA方法是RGB图像传感器,光谱法(NIR),无人驾驶飞机(UAV)和Yolov3,它们在预测高茎果实的成熟方面的准确性大于75%。该方法的选择将主要取决于您是要分析果实的内部还是外部部分,因此,重要的是要识别高茎果实在其生长阶段的色素沉着的变化。
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
我们提出了指示插道,这是一个将计算机视觉任务与Human指令保持一致的统一且通用的框架。与现有的方法相比,将先验知识整合并预先定义了每个视觉任务的输出空间(例如,构想和坐标),我们将各种视觉任务施加到人类直觉的图像操纵程序中,其输出空间是一个灵活的交互式像素空间。具体而言,该模型是建立在扩散过程的基础上的,并经过培训可以根据用户说明进行预测像素,例如将男人的左肩围绕红色或左右涂上蓝色面具。指示示例可以处理各种视觉任务,包括未识别任务(例如分割和关键点)和生成任务(例如编辑和增强)和在新颖数据集中胜过先前的方法。这代表了朝着视觉任务的通才建模界面迈出的坚实一步,在计算机视觉领域中推进了人工通用的intel。
1。水资源:通过保护和保护水资源来增强水安全。改善综合水资源管理,并通过法规和技术措施确保水质。促进气候硫化的水存储和分配基础设施,例如为井,雨水收集和社区池塘。2。生物多样性:制定和实施综合的生物多样性保护计划,以保护和保护高保护价值领域。通过基于生态系统的适应来修复降级的栖息地,并建立新的保护区以确保受威胁生态系统的生存。改善湿地的健康状况(即Ramsar遗址)充当闸门,牧场,牧场和沙漠和保护水生的多样性和栖息地条件。3。改善针对气候诱发灾难的反应:通过优先考虑灾难挽救基础设施来加强气候诱发的灾难管理能力,
knauf绝缘材料进行了数字化转换,以使用AI驱动的解决方案来增强其质量检查过程。,他们面临着耗时且容易出现人为错误的手动检查过程的挑战。一项试点计划测试了视觉AI系统,该系统后来成功部署了生产线,从而产生了更高质量的产品,并通过自动化提高了效率。持续的评估和迭代对于将系统提炼和改进为成功的解决方案至关重要,从而降低成本并提高客户满意度。
深度学习和神经网络:多层感知器:多层感知器体系结构,什么是隐藏的层?每一层中有多少层和多少个节点?激活函数:线性传输函数,重型阶跃功能(二进制分类器),sigmoid/logistic函数,软马克斯函数,双曲线切线函数(TANH),整流的线性单元,泄漏的relu。前馈过程:前馈计算,特征学习。错误函数:错误函数是什么?,为什么我们需要一个错误函数?错误总是正面的,均为正方形错误。跨凝性,关于错误和权重优化算法的最终说明:什么是优化?,批处理梯度下降,随机梯度下降,微型批次梯度下降,梯度下降点击。反向传播:什么是反向传播?,反向传播外卖。
我们介绍了Florence-2,这是一个新型视觉基础模型,具有统一的,及时的代表,用于量级计算机视觉和视觉语言任务。在转移学习方面表现出色时,他们努力通过简单的说明执行各种任务,这意味着处理各种空间层次结构和语义粒度的复杂性。Florence-2旨在将文本推出作为任务说明,并以文本形式产生理想的结果,无论是限制,对象检测,接地还是分割。这种多任务学习设置需要大规模的高质量注释数据。为此,我们使用自动化图像注释和改进的迭代策略,共同开发了1.26亿张图像的FLD-5B。我们采用了一个序列结构,以训练佛罗伦萨-2,以执行多功能和全面的视觉任务。对众多任务的广泛评估表明,佛罗伦萨-2是具有未曾预性零击和微调功能的强大愿景基础模型竞争者。
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
