01-19 / 9316184 002/GB/A / 文档和/或图片不具有法律约束力。bioMérieux 可随时修改,无需事先通知 / BIOMÉRIEUX、BIOMÉRIEUX 徽标、ADVANCED EXPERT SYSTEM、DENSICHEK、FLEXPREP 和 VITEK 是 bioMérieux、其子公司或公司之一的已使用、待批和/或已注册商标 / CLSI 是 Clinical Laboratory and Standards Institute, Inc. 的商标。 / 任何其他名称或商标均归其各自所有者所有 / bioMérieux SA 673 620 399 RCS Lyon / 照片:Bouchut / 法国印刷 / théra RCS Lyon B 398 160 242
BioMérieux的专有高级光谱分类器可帮助实验室提供准确的结果,以支持明智的治疗决策。Vitek MS系统将每个频谱读取为一系列峰,这些峰被质量和强度检测到并分类,提供了稳健而准确的性能,而无需修改得分。该数据库的构建考虑了多样性,包括用于不同样品起源的光谱(例如,血液,组织),在各种培养基上培养的分离物以及具有不同孵化时间的光谱。这导致了同一物种内物种和菌株之间更好的区分。vitek MS知识库v3.2包括综合性数据库更新,诺卡氏菌和模具,包括布鲁氏菌,念珠菌和伊丽莎白·埃里兹本·阿纳希利斯。在质谱系统上快速识别这些困难的生物的能力使微生物学家能够为临床医生提供可行的结果,从而有助于对诸如结核病等疾病的更快治疗。vitek MS在识别分枝杆菌,诺卡氏菌和模具方面的出色表现,可以快速向医生释放结果以获得更好的患者护理。这有助于医院节省金钱(分子探针;测序;发送)和时间(内部测试;更快地识别这些困难的生物)。Vitek MS v3.2数据库现在包括对实验室人员危害的布鲁氏菌种,但可以与系统迅速识别。念珠菌和伊丽莎白·埃里萨伯氏菌动脉藻是具有临床意义的新的新兴病原体。vitek MS旨在优化微生物实验室的工作流程。其4型滑动容量可以通过四位不同的技术人员平行制备样品,从而可以同时测试每次运行多达192个分离株。使用Vitek MS Prep Station,系统提供引导幻灯片准备和与AST的无缝集成。重点是最小化动手时间,Vitek MS启用了当天ID和AST(带有Vitek 2)结果,从而使实验室可以专注于更多增值任务。BioMérieux的Myla解决方案为各种尺寸的实验室(1-192个样本/运行)提供了高级中间件功能。它提供了Vitek MS和Vitek 2的ID和AST结果的实时报告和无缝集成。这会提高实验室效率和信心。Vitek MS系统通过提供完全的可追溯性和灵活性来对这些改进产生重大贡献。试剂和一次性设备上的条形码可通过AST结果自动链接,从而提高了整体准确性。一次性幻灯片进一步降低了由于污染而导致错误结果的风险,并最大程度地减少了化学安全危害。BioMérieux的专有晚期光谱分类器(ASC)使用加权bin矩阵来构建其知识基础参考菌株数据库。这包括来自1,316个分类单元,207个霉菌和酵母,16个Nocardia和39个分枝杆菌的数据,每个物种平均有40个参考光谱,涵盖应变变化,培养基类型和生长条件。ASC中的binning算法可以实现置信度大于99%的生物体的明确识别。这是通过分析每个光谱中的1,300个数据点而不是比较光谱模式来实现的。该过程会导致快速分析时间,并提高了现有方法的准确性。Vitek MS通过在几分钟内提供微生物识别来支持抗菌管理计划。它为实验室人员和临床医生提供了好处,包括启动最佳治疗的快速和可行的结果。在广泛覆盖临床上重要的生物和高度准确的结果的情况下,Vitek MS有助于降低住院时间,总医院成本和死亡率。该系统在临床上具有重要意义的生物的全面数据库提供了快速的结果,可改善阳性患者的结局并减少最佳抗生素疗法的时间。它的好处也扩展到实验室人员,使他们能够识别以前难以使用传统方法ID的生物。具有1,316种生物的综合数据库生长,包括分枝杆菌,诺卡氏菌,布鲁氏菌,念珠菌和伊丽莎白·埃里扎贝林亚山脉。使用Vitek 2易感性测试的用户友好的软件集成流线工作流程。该系统通过快速识别生物体并开始适当的治疗来有助于减少住院时间。研究表明,对生物的结果具有很高的信心,减少了治疗时间并最大程度地减少成本。参考文献:[研究列表]质谱学通过在分析前和分析后阶段之间提供自动联系来彻底改变微生物实验室的自动化。这项创新使自动化电路完成了测试和报告,从而导致微生物学实验室。Vitek MS系统是飞行质谱仪的基质辅助激光解吸时间,可快速鉴定出来自临床培养的微生物。该仪器及其伴随预备站和采集站简化了识别微生物并提供准确结果的过程。Vitek MS系统是一种分子诊断工具,已集成到实验室中,以提供单个患者样本及其测试结果的完整跟踪和验证。这种集成允许与其他实验室仪器和实验室信息系统(LIS)无缝连接,从而使所有数据都可以在一个地方访问和查看。几个出版物强调了使用Vitek MS来识别各种媒体类型的阳性患者样本的可靠性,安全性和效率。这些研究表明,MALDI-TOF质谱法在鉴定诺卡氏症,分枝杆菌和其他微生物方面的准确性。新的BioMérieuxVitek MS v3.0数据库已通过许多研究验证,包括ECCMID 2017和ASM 2017会议。这些研究表明,数据库可有效地以高精度识别霉菌,分枝杆菌和Nocardia菌株。除了其临床应用外,还将MALDI-TOF质谱法与其他识别方法(包括Vitek MS和商业数据库)进行了比较。这些比较强调了在实验室环境中使用MALDI-TOF的优势。此外,一项研究还评估了Vitek MS系统的性能,以识别医学上重要的酵母菌。该技术还用于鉴定固体培养物上的皮肤植物,在鉴定之前迅速使分枝杆菌和诺卡氏菌种类灭活,并区分肺炎链球菌和pseudopococcus pseudopoccus pseudopoccus。此外,它已与16S rRNA和回旋基因测序结合在一起,实际上鉴定了临床重要的Viridans组链球菌。总体而言,Vitek MS系统和MALDI-TOF质谱法证明了它们在实验室环境中的可靠性,安全性和效率,以识别广泛的微生物。几项研究已经比较并评估了不同基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)系统的性能,以识别各种类型的微生物。这些研究包括对两个MALDI-TOF MS系统的比较评估,即Vitek MS和Microflex LT,以鉴定革兰氏阳性球形; Bruker Microflex LT和Vitek MS MALDI-TOF质谱系统的性能和可靠性,用于鉴定临床微生物;比较和优化两个MALDI-TOF MS平台,用于鉴定医学相关的酵母菌; Vitek MS v2.0 Maldi-TOF质谱系统的多中心验证,用于鉴定刺眼的革兰氏阴性细菌; Vitek MS系统的多中心评估,用于非肠杆菌科革兰氏革兰氏阴性杆菌的质谱鉴定;使用Vitek MS系统对厌氧菌细菌质谱鉴定的多中心评估;以及对飞行质谱系统的Vitek MS矩阵辅助激光解吸时间的多中心评估,用于鉴定革兰氏阳性有氧细菌。
Jenni Punt自1996年以来一直是Haverford College的生物学教授,毕业于Bryn Mawr College,毕业于Haverford College的生物学专业。后来,她在宾夕法尼亚大学(University of Pennsylvania)进行了一项合并的VMD/PHD免疫学计划,并在美国国立卫生研究院的Alfred Singer博士的带领下完成了博士后研究金。Sharon Stranford获得了Drexel University的微生物学和免疫学博士学位,并在那里与Elizabeth Blankenhorn一起自身免疫性。然后,她在牛津大学担任博士后研究员三年,探索移植免疫学,后来与加利福尼亚大学旧金山分校的杰伊·列维(Jay Levy)博士合作。帕特里夏·琼斯(Patricia Jones)是斯坦福大学生物学系的南希·昌(Nancy Chang)博士,他获得了博士学位。约翰·霍普金斯大学(Johns Hopkins University)于1974年获得生物学/免疫学。她目前自2000年以来一直担任教师发展和多样性的副教务长。朱迪思·欧文(Judith Owen)自1981年以来一直在哈弗福德学院(Haverford College)任职,她是伊丽莎白·乌福德(Elizabeth Ufford)自然科学主席的第一任持有人。她从剑桥大学获得了学位,并与诺曼·克林曼(Norman Klinman)博士一起在宾夕法尼亚大学获得博士学位,然后在维斯塔尔研究所(Wistar Institute)进行博士后研究。作者詹妮·普特(Jenni Punt),莎朗·斯特兰福德(Sharon Stranford),帕特里夏·琼斯(Patricia Jones)和朱迪·欧文(Judy Owen)撰写了更新的版本的“库比免疫学”(Kuby Immunology),该教科书在实验环境中介绍了当前的免疫学主题,传达了对科学发现的兴奋。新版本拥有有关先天免疫力的新章节。他们为文本带来了一系列的教学和研究经验,继续由Janis Kuby发起的基于实验的方法。为了更好地满足学生的挑战并加强了免疫学主题之间的联系,本大学教科书在实验环境中提出了尖端的概念。由教师为学生撰写的唯一特定课程的教科书,它传达了科学发现的刺激,同时为初学者提供了出色的支持。**Section 1: Immune System and Innate Immunity** * Introduction to the Immune System * Cells, Tissues, and Organs of the Immune System * Mechanisms of Innate Immunity * Complement * Mononuclear Phagocytes in Immune Defence **Section 2: Adaptive Immune Responses** * T-Cell Receptors and Major Histocompatibility Complex Molecules * Antigen Presentation * Cell-Mediated Cytotoxicity * B细胞发育和抗体反应 *抗体 *免疫耐受性 *对组织中免疫反应的调节**第3节:针对感染剂的防御** *对病毒的免疫力 *对细菌的免疫力 *对细菌的免疫力和对原生动物和蠕虫的免疫力 *原生动物 *疫苗 *的免疫 * 4:免疫** 4:免疫效率 *免疫缺陷和不抑制**第5节:针对组织的免疫反应** *自身免疫性和自身免疫性疾病 *移植和排斥 *对癌症的免疫**第6节:高敏性**
单词数27摘要:249 28简介:538 29讨论:2183 30 31利益冲突:J。L. Vitek担任Medtronic,Boston Scientific和Abbott的顾问,并在外科手术信息科学的科学咨询委员会上任职。33 34资金来源:NIH NINDS:R01 NS058945,R01 NS037019,P50 NS098573,R37 NS077657 35 MNDRIVE(Minnesota的发现,研究和创新经济条件)
字数 22 摘要:247 23 引言:616 24 讨论:1770 25 26 利益冲突:JL Vitek 担任 Medtronic、Boston Scientific 和 Abbott 的顾问,27 担任外科信息科学科学顾问委员会成员。 28 29 资金来源:NIH NINDS:R01NS037019、R37NS077657、P50 NS098573 30 MnDRIVE(明尼苏达州发现、研究和创新经济)脑部疾病计划,31 Engdahl 家族基金会 32 33
摘要:芽孢杆菌和相关属是药物生产环境中最重要的污染物之一,在物种水平上鉴定这些微生物有助于研究污染的来源以及预防性和纠正性决策。这项研究的目的是评估三种方法,以表征从巴西里约热内卢的药物单位分离出的内孢子的有氧细菌菌株。MALDI-TOF MS,并使用Sanger方法进行了完整的16S rRNA基因测序。结果表明芽孢杆菌属(n = 9; 36.0%),priestia(n = 5; 20.0%)和佩尼比曲霉(N = 4; 16.0%)的流行率。三个(20.0%)菌株显示出<98.7%的DNA测序相似性在ezbiocloud数据库上,表明可能的新物种。此外,将芽孢杆菌杆菌的重新分类为Priestia属,为Priestia pseudoflexus sp。nov。提出了。总而言之,16S rRNA和MALDI TOF/MS不足以识别物种水平的所有菌株,并且需要进行互补分析。
时点患病率调查 (PPS) 是在预定日期进行的。这些 PPS 在一年的研究期内每季度进行一次。这四个 PPS 的数据都已被考虑在内。四次时点患病率调查分别在第 1 季度(2018 年 11 月)、第 2 季度(2019 年 3 月)、第 3 季度(2019 年 7 月)和第 4 季度(2019 年 12 月)进行。数据由派驻不同地区的护理人员在预定日期从早上 8 点到第二天早上 8 点收集,然后由该地区的高级护理人员和医疗记录部门 (MRD) 进行验证。当前的调查重点是确定细菌培养率 (BCR) 和针对性抗菌治疗 (TAMT)。微生物样本在微生物实验室中使用常规和自动化细菌培养系统和抗菌药敏测试(BacT Alert 和 Vitek II BioMérieux,法国马西莱托伊尔)进行处理。细菌培养率(BCR)计算为在所有使用抗生素的患者中,送去进行微生物培养的患者的比例。
深部脑刺激 (DBS) 自 1980 年代以来一直用于治疗运动障碍。与病变疗法相比,DBS 有几个明显的优势。它是可逆的,并且可以提供更好的症状缓解,并且并发症比病变少。DBS 通过植入后调整治疗参数来产生最大疗效,并且可以双侧应用,而双侧病变通常会导致很高的副作用风险(Okun 和 Vitek,2004)。DBS 最先用于治疗帕金森病,是 FDA 批准的帕金森病 (PD)、特发性震颤和肌张力障碍的治疗方法。据估计,美国约 150,000 名运动障碍患者植入了 DBS 设备(Benabid 等人,1987)。这一成功鼓励了 DBS 在各种神经精神疾病中的应用。最近,DBS 已被批准用于治疗强迫症和难治性癫痫。由于上述大多数神经精神疾病的结果不一致,使用 DBS 治疗重度抑郁症(Dandekar 等人,2018 年)和阿尔茨海默病(Lozano 等人,2016 年)的临床试验效果有限。治疗的几个关键方面仍未解决,特别是根据个体解剖和病理生理差异,应如何、在何处和何时进行刺激。本综述讨论了癫痫或帕金森病患者的这些因素。
血液感染(BSI)是由抗菌抗菌(AMR)革兰氏阴性菌(GNB)引起的,是发病率和死亡率的重要原因。第三代头孢菌素(3GC)多年来一直用作BSI和其他侵入性感染的经验治疗;但是,它们的过度使用可以促进扩展的光谱β-乳乳糖酶(ESBLS)的出现。 因此,这项研究旨在确定流行病学,临床和微生物学特征,以及抗菌耐药性对赞比亚卢萨卡一家推荐医院BSI结果的影响。 这是在赞比亚卢萨卡的一家转诊医院进行的六个月前瞻性研究。 作为常规诊断和患者护理的一部分,从发烧的患者中收集了细菌培养的血液样本,并使用Vitek 2紧凑型仪器进行了病原体鉴定和抗菌敏感性测试。 使用聚合酶链反应方法确定 ESBL和质粒介导的喹诺酮抗性(PMQR)相关基因。 使用结构化数据收集表收集患者信息,并在CSPRO 7.6中输入。 在Whonet和Stata版本14中分析了数据。 总共分离了88个GNB,其中76%为肠杆菌,14%的鲍曼尼杆菌和8%的铜绿假单胞菌。 对第三代和第四代头孢菌素的抵抗力分别为75%和32%。 值得注意的是,侵入性经验治疗,碳青霉烯耐药性(7%),多药耐药性(83%)和ESBL产生剂(76%)的高患病率(68%)。 与e相比。第三代头孢菌素(3GC)多年来一直用作BSI和其他侵入性感染的经验治疗;但是,它们的过度使用可以促进扩展的光谱β-乳乳糖酶(ESBLS)的出现。因此,这项研究旨在确定流行病学,临床和微生物学特征,以及抗菌耐药性对赞比亚卢萨卡一家推荐医院BSI结果的影响。这是在赞比亚卢萨卡的一家转诊医院进行的六个月前瞻性研究。作为常规诊断和患者护理的一部分,从发烧的患者中收集了细菌培养的血液样本,并使用Vitek 2紧凑型仪器进行了病原体鉴定和抗菌敏感性测试。使用聚合酶链反应方法确定 ESBL和质粒介导的喹诺酮抗性(PMQR)相关基因。使用结构化数据收集表收集患者信息,并在CSPRO 7.6中输入。在Whonet和Stata版本14中分析了数据。总共分离了88个GNB,其中76%为肠杆菌,14%的鲍曼尼杆菌和8%的铜绿假单胞菌。对第三代和第四代头孢菌素的抵抗力分别为75%和32%。值得注意的是,侵入性经验治疗,碳青霉烯耐药性(7%),多药耐药性(83%)和ESBL产生剂(76%)的高患病率(68%)。与e相比。大肠杆菌是BSI的病因,感染鲍曼尼杆菌(OR = 3.8)的患者的死亡几率明显更高。在接受3GC的患者中,死亡的几率也更高。