多重耐药性疟原虫的不断选择和繁殖要求我们鉴定出参与尚未被靶向的代谢途径的新的抗疟药物候选物。枯草杆菌蛋白酶样 1(SUB1)属于新一代药物靶点,因为它在寄生虫生命周期的不同阶段从受感染的宿主细胞中逃出时起着至关重要的作用。SUB1 的特点是具有一个不寻常的脯氨酸区域,该区域与其同源催化结构域紧密相互作用,因此无法对酶-抑制剂复合物进行 3D 结构分析。在本研究中,为了克服这一限制,采用严格的离子条件和控制重组全长间日疟原虫 SUB1 的蛋白水解,以获得没有脯氨酸区域的活性稳定催化结构域 (PvS1 Cat) 晶体。 PvS1 Cat 的高分辨率 3D 结构(单独存在以及与-酮酰胺底物衍生的抑制剂 (MAM-117) 复合存在)表明,正如预期的那样,SUB1 的催化丝氨酸与抑制剂的-酮基形成共价键。氢键和疏水相互作用网络使复合物稳定,包括抑制剂的 P1 0 和 P2 0 位置,尽管 P 0 残基在确定枯草杆菌蛋白酶的底物特异性方面通常不太重要。此外,当与底物衍生的肽模拟抑制剂结合时,SUB1 的催化槽会发生显著的结构变化,尤其是在其 S4 口袋中。这些发现为未来设计优化的 SUB1 特异性抑制剂的策略铺平了道路,这些抑制剂可能定义一类新的抗疟候选药物。
Mariano Mariano,Fernando Batista,Maurel Manon,Anthony Bouillon,Laura Ortega,Anne Marie Wehenkel,Lucile骑士,Blondel Ahmed,Ahmed Haouz,Jean-François,
疟原虫疟疾的有效自由基治愈对于消除疟疾至关重要。p。Vivax自由基固化需要进行精神分裂剂,例如氯喹以及8-氨基喹啉。然而,8-氨基喹啉导致glu-cose-cose-6-磷酸脱氢酶(G6PD)缺乏症的个体溶血,需要事先筛查才能排除那些处于危险中的人。巴西正在开创tafenoquine的实施,塔夫纳奎因是一种单剂量的8-氨基喹啉,指示为p。>正常G6PD活性的70%的Vivax患者。 tafenoquine在Manaus和Porto Velho中实施,位于巴西西部亚马逊的两个市政当局包括对医疗保健专业人员(HCP)的全面培训,该培训是对Point-Point-Point-Point量化G6PD测试和一种新的治疗算法。 Vivax自由基固化结合了tafenoquine。 最初向高级设施(第一阶段)提供培训,后来适用于初级保健部门(第二阶段)。 这项研究分析了HCP在培训和实施过程中的经验,并确定了障碍和促进者。 在每次培训后30天进行了深入的访谈和焦点讨论小组,以进行有目的的随机样本115 HCP。 主题分析是使用MAXQDA软件进行的,通过归纳和演绎编码来分析数据。 分析表明,通过对高级设施进行初步培训,一些HCP并没有自信执行定量G6PD测试并开处方Tafenoquine方案。>正常G6PD活性的70%的Vivax患者。tafenoquine在Manaus和Porto Velho中实施,位于巴西西部亚马逊的两个市政当局包括对医疗保健专业人员(HCP)的全面培训,该培训是对Point-Point-Point-Point量化G6PD测试和一种新的治疗算法。Vivax自由基固化结合了tafenoquine。最初向高级设施(第一阶段)提供培训,后来适用于初级保健部门(第二阶段)。这项研究分析了HCP在培训和实施过程中的经验,并确定了障碍和促进者。在每次培训后30天进行了深入的访谈和焦点讨论小组,以进行有目的的随机样本115 HCP。主题分析是使用MAXQDA软件进行的,通过归纳和演绎编码来分析数据。分析表明,通过对高级设施进行初步培训,一些HCP并没有自信执行定量G6PD测试并开处方Tafenoquine方案。对第二阶段的培训进行修改,从而改善了理解G6PD测试和Tafenoquine的实施过程,以及HCPS获得的知识。此外,通过原位培训,通过消息传递应用程序进行同行交流以及教育材料来解决知识差距。培训支持有效部署Manaus和Porto Velho的新工具,并提高了人们对
在全球范围内,疟疾仍然是最普遍的寄生虫之一。世界卫生组织(WHO)2022年世界疟疾报告显示,全球估计有2.47亿例和96%的疟疾死亡发生在非洲(1)。引起该疾病的生物来自疟原虫属。当感染性雌性蚊子摄取血液餐时,这些寄生虫会传播到易感宿主。四种不同的疟原虫感染了人类,即恶性疟原虫,P。ovale,P。疟疾和Vivax。虽然Vivax是全球最广泛的质量物种,但恶性疟原虫是最普遍,最危险的,并且主要在非洲发现,占估计全球临床疟疾病例的99.7%(1)。卵子疟原虫进一步分为两个亚种; P.O。柯蒂西和P. Wallikeri(2)。除了典型的人类寄生虫外,最近还发现了许多猿猴寄生虫
简短的串联重复序列(STR)是在种群遗传学分析中广泛使用的高度信息遗传标记。它们是遗传脱位的重要来源,也可以产生功能影响。尽管有生物信息学方法可用于从整个基因组测序数据中对STR进行大规模全基因组基因分型,但它们以前尚未应用于来自大量疟疾寄生虫田间样品的大量集合数据。在这里,我们使用HIPSTR在3,000多个恶性疟原虫和174疟原虫中使用HIPSTR进行了基因分型STR,从全球收集的样品中发表了全基因组序列数据。最终的呼叫集中的噪声和可变性高,因此需要开发一种新型的STR基因型调用质量控制方法。一组高质量的str基因座(p。falciparum和p。vivax)用于研究疟原虫遗传多样性,种群结构和选择的遗传学特征,并将其与全基因组单核苷酸多态性(SNP)基因分型数据进行了比较。此外,p。含量的遗传变异和其他特征的全基因组信息。恶意和p。Vivax已在基于交互式Web的R Shiny应用程序PlasmoStr(https://github.com/ bahlolab/plasmostr)中可用。
全球恶性疟原虫(最致命的疟疾寄生虫,也是非洲大陆最流行的疟疾寄生虫)印度尼西亚恶性疟原虫、间日疟原虫(撒哈拉以南非洲以外大多数国家的主要疟疾寄生虫)和诺氏疟原虫 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report- 2023
• Poostchi Mahdieh 等人,使用薄血涂片显微镜对人类和小鼠进行疟原虫检测和细胞计数,医学影像杂志 5,第 4 期 (2018):044506。• Feng Yang 等人,级联 YOLO:在薄血涂片中自动检测间日疟原虫,将于 2020 年 2 月 18 日至 20 日在美国休斯顿的 SPIE 医学影像大会上发表。
引言:由于急性溶血性贫血的风险,在6-磷酸盐脱氢酶(G6PD)缺乏个体中禁忌使用8-氨基喹啉的疟原虫用8-氨基喹啉治疗。有效的G6PD筛查至关重要,以避免药物反应不良。这项研究旨在评估新的定量护理(POC)测试的性能,作为马来西亚G6PD缺乏症的新筛查方法。材料和方法:使用两种定量POC测试,CARESTART TM BIOSESOR(CARESTART)和CARESTART TM BIOSENSOR 1(S1),筛选了1个月至12岁的年龄较大儿童的99名新生儿血液,99名年龄较大的儿童外周血和62名外周血缺陷。将结果与OSMMR2000D套件作为参考测定法进行了比较。在本研究中进行了两次统计分析,以评估POC测试性能,Spearman的相关测试和Cohen的Kappa方法。结果:Carestart和S1测试均显示与OSMMRS000D的显着正相关,R 2 = 0.7916和R 2 = 0.7467。他们的一致性测量表明,KAPPA(κ)值分别为0.805(P <0.001,95%CI)和0.795(P <0.001,95%CI)。分析接收器工作曲线下的面积(ROC)在60%的截止下表明,carestart具有90.2%的敏感性,98.9%的特异性,98.3%的阳性预测价值(PPV)和93.8%的负预测值(NPV)。S1的相应值分别为95.2%,100%,100%和96.8%。结论:这项研究表明,骑手和S1生物传感器对G6PD缺乏的筛查具有高性能的可靠性,这可以指导抗马拉里菌药物的安全处方,因此消除了疟原虫疟疾疟疾。
引起疟疾的疟原虫通过传染性按蚊叮咬传播。有关寄生虫传播方式的详细信息,请参阅附录 A:疟疾生命周期。五种疟原虫可导致人类患病:恶性疟原虫、间日疟原虫、卵形疟原虫、三日疟原虫和诺氏疟原虫。由于疟疾在 20 世纪 50 年代初在美国被消灭,因此人们认为美国居民对疟疾没有免疫力,容易患上重病甚至死亡。在美国,每年约有 2,000 人被诊断出患有疟疾,其中大多数人是在存在持续蚊媒传播(输入性疟疾)的国家感染疟疾的。由于可传播疟疾的按蚊遍布大多数州,因此在美国境内,疟疾有可能从输入病例传播给非旅行者(但很少见)。
