摘要 声学中的概念和形式主义通常用于举例说明量子力学。相反,正如 Gabor 研究表明的那样,量子力学可用于实现对声学的新视角。在这里,我们特别关注人类声音的研究,将其视为研究声音世界的探针。我们提出了一个基于发声可观测量的理论框架,以及一些可用于分析和合成的测量设备。类似于粒子自旋态的描述,量子力学形式主义用于描述与语音标签(如发声、湍流和声门上肌弹性振动)相关的基本状态之间的关系。这些状态的混合及其时间演变仍然可以在 Fourier/Gabor 平面中解释,并且可以实现有效的提取器。本文介绍了声音量子声音理论的基础,以及对声音分析和设计的影响。
图 1 P. discolor 基因组的改进基因注释。UCSC 基因组浏览器截图展示了具有各种改进的基因座示例,包括注释 (A) 先前注释中缺失的基因;CNTNAP2 ,(B) 新外显子;FOXP2 ,(C) 改进的 UTR;THSD1 ,和 (D) 替代异构体;GABRP 。在每个面板中,顶部轨道(浅蓝色)表示 Jebb 等人 2020 年报告的先前注释,第二条轨道(黑色)报告当前研究的更新注释。蓝色和红色的附加轨道表示支持当前注释的实验证据。水平线表示预测或观察到的基因座。垂直线或粗矩形表示通过预测或功能数据识别的外显子。较细的矩形表示从第一个外显子(5'UTR)或最后一个外显子(3'UTR)延伸出来的非翻译区(UTR)。箭头表示编码区(外显子)之间的非编码序列(内含子)和基因组中的编码方向。每个基因下方标有以千碱基 (kb) 为单位的比例尺。
精确的声道建模对于构建可解释语音处理和语言学的发音表征是必不可少的。然而,声道建模具有挑战性,因为许多内部发音器官被外部运动捕捉技术遮挡。实时磁共振成像 (RT-MRI) 可以测量语音过程中内部发音器官的精确运动,但由于标记方法耗时且计算成本高昂,MRI 的注释数据集大小有限。我们首先使用纯视觉分割方法为 RT-MRI 视频提出一种深度标记策略。然后,我们介绍一种使用音频来改进发声器官分割的多模态算法。我们共同为 MRI 视频分割中的声道建模设定了新的基准,并利用该基准为 75 位说话者的 RT-MRI 数据集发布了标签,将声道的带标签公共 RT-MRI 数据量增加了 9 倍以上。代码和数据集标签可在 rishiraij.github.io/multimodal-mri-avatar/ 找到。索引术语:发音语音、视听感知
抽象背景:一种被称为双边声折的困难条件(BVFI)可能是由多种疾病引起的,例如声带瘫痪,synkinesis,cricoarytenoid关节固定和层内刺伤。大多数患者患有Stridor和呼吸困难,但是,也可能发生呼吸困难。可以通过使用彻底的历史记录收集,喉镜评估在全身麻醉或清醒状况,喉部EMG以及使用CT和/MRI的成像测试来实现精确的诊断和合适的管理计划。在50%以上的情况下,据信,儿童先天性神经系统疾病的最普遍的病因之一是自发恢复。因此,人们通常认为,在选择进行任何有害治疗之前,应该在必要时使用气管切开术保护患者六个月以上。后期发光性狭窄的儿童可能受益于肋骨移植喉管气管修复。与儿童相比,成年人更有可能将BVFI作为手术后的后果。可以使用许多静态或动态技术,例如声带侧侧向横向化,内窥镜或开放性垂体切除术,洲青春类外展和重新支配,后脊髓理术和电气喉部步调;但是,必须根据每位患者的个体需求和BVFI的病理生理仔细选择它们。关键字:双边声折;不动;麻痹。
对声带的准确建模对于构建可解释的语音处理和语言学的关节表达是必要的。但是,声带建模是具有挑战性的,因为许多内部铰接器都被外部运动捕获技术遮住了。实时磁共振成像(RT-MRI)允许在语音过程中测量膜枢纽器的精确运动,但是由于耗时和计算昂贵的标记方法,带注释的MRI数据集限制了大小。我们首先使用仅视觉分段的方法为RT-MRI视频提供了深刻的标签策略。然后,我们使用音频引入多模式算法,以改善人声铰接器的分割。一起,我们为MRI视频细分中的声带建模设定了一个新的基准测试,并使用它来发布75个扬声器RT-MRI数据集的标签,从而将人声道标记的公共RT-MRI数据增加到9。代码和数据集标签可以在rishiraij.github.io/ mult-opodal-mri-avatar/。索引术语:发音演讲,视听感知
图 2 发声过程中运动的时间特性变化。(a)每个年龄组在发声前 3 秒开始并在发声后 3 秒结束的身体运动中位旋转速度的 z 分数。垂直实心黑线表示发声的开始,而垂直阴影区域表示该年龄组的发声持续时间中值。(b)每个年龄组在发声前 3 秒开始并在发声后 3 秒结束的身体运动中位旋转速度。垂直实心黑线表示发声的开始,而垂直阴影区域表示该年龄组的发声持续时间中值。水平阴影区域表示自举 95% 置信区间,黑线表示中值。红色中值区域表示旋转速度超出自举显着性检验界限的时间点。(c)发声前、发声中和发声后的中位身体速度。发声前后时间段的中位数与发声持续时间相同。误差线表示自举的 95% 置信区间。星号表示 p < 0.0001 的显著性。
自 2019 年发现严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 可导致 2019 年冠状病毒病 (COVID-19) 以来,已进行了许多针对该病毒的疫苗开发试验。信使核糖核酸 (mRNA) 疫苗作为疫苗的一种,已经迅速开发和商业化,但没有足够的时间来验证其长期安全性。一名 82 岁女性患者在接种第 3 剂 COVID-19 mRNA 疫苗(Comirnaty,辉瑞-BioNTech,美国)三天后因呼吸困难伴喘鸣被送入急诊室。患者经喉镜诊断为双侧声带麻痹 (VFP)。依次进行插管和气管切开术后呼吸窘迫得到改善。进行了脑、胸、颈部影像学检查、血清学检查、心脏病学分析和免疫学测试,以评估双侧 VFP 的原因。但是,除了之前接种过疫苗外,没有发现其他明确的原因。由于双侧 VFP 可能导致致命情况,因此当接种疫苗后出现伴有喘鸣的呼吸困难时,需要快速评估是否患有 VFP。
最后,我要感谢我的家人,感谢你们一直以来的支持。我希望我让你们为我感到骄傲,并将继续这样做。爸爸,谢谢你们一直相信我。伊萨姆,我的哥哥,我希望我能成为你们的灵感源泉,正如你一直告诉我的那样。我最亲爱的妈妈和我的妹妹海法,这一成就,以及你们所说的成功,是对你们无尽的支持、爱和牺牲的证明。妈妈,你不懈的努力、对我的信任以及在所有挑战中陪伴着我,一直是我的力量源泉。海法,你的鼓励和陪伴让我脚踏实地,充满动力。我希望这一里程碑能带给你们和你带给我生命中的快乐和自豪一样多。我会一直努力让你们为我感到骄傲,因为你们塑造了今天的我。还有我的妹妹胡埃达,我为她感到无比自豪,你教会了我很多东西,我永远敬佩你。你的毅力、自信和取得更大成就的动力是我不断的灵感源泉。你每天都让我惊叹不已。Pitouti,我爱你。Wenti outi,wenti zeda,wenti zeda,wenti zeda……。
1 “Julie 谈论她的声音,第 2 部分”,YouTube 视频。2 “Rolando Vilazon 谈论他的声带囊肿”,YouTube 视频。3 “拯救沉默歌手的手术”,周末版周日,NPR 系列。4 “Natalie Dessay”,Thé ou café 的一集。5 McCoy,你的声音,17。6 McCoy,你的声音,26。
1 “Julie 谈论她的声音,第 2 部分”,YouTube 视频。2 “Rolando Vilazon 谈论他的声带囊肿”,YouTube 视频。3 “拯救沉默歌手的手术”,周末版周日,NPR 系列。4 “Natalie Dessay”,Thé ou café 的一集。5 McCoy,你的声音,17。6 McCoy,你的声音,26。