最多可将2 x 120 bvms链接在正在测试的单个电池库中,该电池库通常用于对电源变电站,电信设施和UPS系统中通常发现的大型工业电池组的容量测试。与负载设备一起使用时(例如Megger Torkel)和测试数据管理软件(Torkel Viewer,PowerDB或Torkel Win)BVM系统促进了根据IEC和IEEE标准执行自动电池组容量测试。该测试还符合NERC/FERC要求。BVM系统以模块化形式设计,其中一个BVM设备用于每个电池单元格或“ jar”的字符串中的“ jar”。每个电池的一个BVM以“雏菊链”方式连接到下一个电池,从而提供了简单且经济的扩展性,以满足小型电池组系统的测试要求。
最多可将2 x 120 bvms链接在正在测试的单个电池库中,该电池库通常用于对电源变电站,电信设施和UPS系统中通常发现的大型工业电池组的容量测试。与负载设备一起使用时(例如Megger Torkel)和测试数据管理软件(Torkel Viewer,PowerDB或Torkel Win)BVM系统促进了根据IEC和IEEE标准执行自动电池组容量测试。该测试还符合NERC/FERC要求。BVM系统以模块化形式设计,其中一个BVM设备用于每个电池单元格或“ jar”的字符串中的“ jar”。每个电池的一个BVM以“雏菊链”方式连接到下一个电池,从而提供了简单且经济的扩展性,以满足小型电池组系统的测试要求。
此外,单独出版物中描述的其他产品涵盖:•烟气低的MV电缆,零卤素LSF-ZH到BS 7835。•柔性电线和电缆最多300毫米2至IEC 60227,BS 6004&BS 6500。•热固性绝缘电线类型XHHW-2,XHHW,XHH,RHW-2,RHW-2,RHW和RHH至UL44•建筑电线(NYA)至IEC 60227和BS 6004,从1.5 mm2及更高版本。•带有PVC和XLPE绝缘的LV电源电缆至IEC 60502-1,BS 5476,BS 7889和UL 1277。•MV电缆至IEC 60502-2,最高为18/30(36)kV和BS 6622至19/33(36)KV。•低烟和烟,零卤素建筑线(LSFZH)至BS 7211,具有替代电线类型(NYA)的Thermo设置绝缘材料,在该应用中,该应用需要更高的安全标准,以防止烟雾,烟雾和有毒气体排放。•带有LSFZH的LV电缆,在暴露于火灾下的热固性绝缘材料会产生烟雾,烟气和有毒气体和零卤素的低排放。电缆是根据BS 6724,IEC 60502-1生产的,并对IEC 61034,IEC 60754&IEC 60332进行了测试。•带有LSFZH至BS 7835的MV电缆。•高达IEC 60840的HV电缆,以及ANSI / ICEA S-108-720,导体尺寸高达1200 mmm2。未来的产品范围将扩展到高达480 kV的高电压电缆,并大于2000毫米2的导体横截面。
celgard和C4V于2023年2月28日,北卡罗来纳州夏洛特市高压锂离子电池的高压锂离子电池的独家战略联盟协议 - Polypore
PARAMETER MIN MAX UNIT VDD1, VDD2 Supply voltage 2 – 0.5 6.5 V VIN Analog input voltage GND1 – 6 VDD1 + 0.5 3 V SHTDN Shutdown mode control input voltage GND1 – 0.5 VDD1 + 0.5 3 V VOUTP, VOUTN Analog output voltage GND2 – 0.5 VDD2 + 0.5 3 V I IN Input current to any pin except supply pins – 10 10 mA T J Junction Temperature 150 °C T STG Storage Temperature – 65 150 °C NOTE: 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute‐maximum‐rated conditions for extended periods may affect device reliability. 2. All voltage values are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values. 3. Maximum voltage must not exceed 6.5 V. 7.2 ESD Ratings VALUE UNIT
摘要 — 光伏是满足日益增长的能源需求的最重要可再生能源之一。这导致了微电网的出现,揭示了许多问题,其中最重要的是管理和监控其运行,本研究主要通过使用依赖于人工神经元的最大功率跟踪算法并将其与独立直流微电网中的能量管理算法相结合来做出贡献,以控制功率分配并维持直流总线电压水平。使用基于 ANN+PID 的最大功率点跟踪 (MPPT) 算法。其中 ANN 通过使用温度和太阳辐射等实时数据估计参考电压来跟踪最大功率点。PI 控制器减少了测量电压和参考电压之间的误差,并进行了必要的调整以控制连接到光伏板的升压转换器。而控制直流总线电压水平的过程是通过电源管理算法控制电池充电和放电过程并根据电池的充电状态控制双向转换器开关来完成的。利用MATLAB Simulink进行仿真结果表明,所采用的MPPT算法实现了最大功率和最小波动,效率为99.92%,准确度为99.85%,并且电源管理算法成功控制了电池的充电/放电过程,并在不同的工作场景下将直流电压水平维持在指定值。
Borealis 为公用事业和可再生能源应用提供行业领先的中压电力电缆化合物。我们的树木阻燃交联聚乙烯 (TR-XLPE) 绝缘材料 (Borlink™ LE4212) 已在 20 多年的使用历史中证明是可靠的。采用 Borealis 绝缘材料和半导体屏蔽层制造的电缆在北美各地的每家 TR-XLPE 电缆制造商中均有使用,通过公用事业电网和可再生能源为家庭和企业提供可靠的电力输送。
Navid 在日立 ABB 电网公司拥有 13 年的工作经验,担任过不同的职务,例如科学家、GIS 研发经理、高效 GIS 和 HV CB GIS 全球产品经理。他目前负责高压产品的生态高效组合。
材料特性、环境因素和产品设计的结合可能会产生意想不到的副作用。例如,漏电流可能会随着时间的推移而增加,最终可能导致硬电弧和灾难性故障。过多的漏电流可能会在高阻抗反馈电路中产生错误,从而导致电压随时间和温度变化而漂移和稳定性问题。FR4 PWB 基板特别容易受到污染和吸收水分的影响。吸收的水分会降低 FR4 的玻璃化转变温度 (Tg),使组件在具有动态热条件的应用中容易发生现场故障。封装系统中的杂质、不正确的填料或不完全固化可能会导致过高的漏电流,这些漏电流会随时间和温度的变化而呈非线性和不稳定状态,从而可能破坏高压系统的稳定性。另一个例子是高压电路特别容易受到电化学迁移的影响。水分会促进离子腐蚀形成导电细丝。重新分布的金属离子可能会发生枝晶生长。高压应力会加速这些电化学过程(尽管锡晶须可以在没有电磁场的情况下形成)。
在2024年,埃塞克斯(Essex)收购了全球合资企业,将磁铁电线业务解决方案重新命名。随着全球业务和简化运营的扩大,该公司的位置良好,可以满足其客户不断发展的需求,并通过生产HVWW®和全面的产品来推动未来的技术。